The infrared absorption spectrum of a linear, 13-atom carbon cluster (C13) has been observed by using a supersonic cluster beam-diode laser spectrometer. Seventy-six rovibrational transitions were measured near 1809 wave numbers and assigned to an antisymmetric stretching fundamental in the 1 sigma g+ ground state of C13. This definitive structural characterization of a carbon cluster in the intermediate size range between C10 and C20 is in apparent conflict with theoretical calculations, which predict that clusters of this size should exist as planar monocyclic rings.
We report the first structural characterization of the triplet isomer of C6. Forty-one rovibrational/fine structure transitions in the nu 4(sigma u) antisymmetric stretch fundamental of the C6 cluster have been measured by diode laser absorption spectroscopy of a supersonic carbon cluster beam. The observed spectrum is characteristic of a centrosymmetric linear triplet state with cumulene-type bonding. The measured ground state rotational constant B0 = 0.048 479 (10)cm-1 and the effective bond length r(eff) = 1.2868 (1) angstroms are in good agreement with ab initio predictions for the linear triplet (3 sigma g-) state of C6.
The nu 3(sigma u) fundamental vibration of 1 sigma g+ Si2C3 has been observed using a laser vaporization-supersonic cluster beam-diode laser spectrometer. Forty rovibrational transitions were measured in the range of 1965.8 to 1970.9 cm-1 with a rotational temperature of 10-15 K. A least-squares fit of these transitions yielded the following molecular constants: nu 3(sigma u)=1968.188 31(18) cm-1, B"=0.031 575 1(60) cm-1, and B'=0.031 437 4(57) cm-1. These results are in excellent agreement with recent Fourier transform infrared (FTIR) measurements of Si2C3 trapped in a solid Ar matrix [J. Chem. Phys. 100, 181(1994)] and with ab initio calculations [J. Chem. Phys. 100, 175 (1994)] which suggest cumulenic-like bonding for Si2C3, analogous to the isovalent C5 carbon cluster.
We report improved measurements for the nu 6 antisymmetric stretch fundamental and observation of the (nu 6 + nu 15)-nu 15 and (nu 6 + 2 nu 15)-2 nu 15 hot bands of the linear C9 carbon cluster by direct absorption diode laser spectroscopy of a supersonic carbon cluster beam. Analysis of these bands characterizes C9 as a semirigid molecule with a bending potential similar to that of C5 and further evidences the alternation in degree of rigidity of linear carbon clusters with the g-u symmetry of the HOMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.