[1] In the companion paper, we identified a repeatable sequence of events leading to substorm onset in THEMIS all-sky imager observations: enhanced flows bring new plasma into the plasma sheet. The new plasma then moves earthward as a flow channel, bringing it to the near-Earth plasma sheet and where it produces onset instability. New plasma entering the dusk (dawn) convection cell drifts equatorward and eastward and then around the Harang reversal, leading to pre-midnight (near-and post-midnight) onset. Here we present evidence supporting this sequence using incoherent scatter radar (ISR) ionospheric observations. Using the Sondrestrom ISR, we find that enhanced flows of new plasma commonly enter the plasma sheet from the polar cap ∼8 min prior to onset. These flows are related to poleward boundary intensification signatures, consistent with the inferences from the imagers. Using the Poker Flat ISR (PFISR), we find that shortly before onset, enhanced westward flows reach the subauroral polarization streams (SAPS) region equatorward of the Harang reversal (dusk-cell onsets) or enhanced eastward flows enter the onset region from the poleward direction (dawn-cell onset). PFISR proton precipitation signatures are consistent with the possibility that the enhanced flows consist of reduced-entropy plasma sheet plasma, and that onset occurs poleward of much of the enhanced SAPS flow (dusk-cell onsets) or equatorward of the enhanced eastward flows (dawn-cell onsets). Consistency with reduced entropy plasma is seen only within the enhanced flows, leading us to suggest that intrusion of low-entropy plasma may alter the radial gradient of entropy toward onset instability.
[1] Satellite observations often show that relativistic electron fluxes that decrease during a geomagnetic storm main phase do not recover their prestorm level even when the storm has substantially recovered. A possible explanation for such sustained flux dropout is that the electrons that move to larger shells (L shells) aided by the disturbance storm time (Dst) effect associated with the main phase geomagnetic field depression may be suffering drift loss to the magnetopause, resulting in irreversible (nonadiabatic) flux decreases during a geomagnetic storm. In this study, we have numerically evaluated the drift loss effect by combining it with the Dst effect and including off-equatorially mirroring electrons for three different storm conditions obtained by averaging 95 geomagnetic storms that occurred from 1997 to 2002. Using the Tsyganenko T02 model and our own simplified method, we estimated the storm time flux changes based on the guiding center orbit dynamics. Assuming that there is no competing source mechanism taking place at the same time, our calculations of the electron fluxes at equatorial midnight suggest that the drift loss when combined with the Dst effect can be responsible for flux dropouts, which can be seen even inside the geosynchronous orbit during storm periods. Specifically, by evaluating omnidirectional flux values at three specific times that correspond to the storm onset time, the time of minimum Dst value, and the end of the Dst recovery, we have obtained the following numerical results. First, for the strong storm with −150 nT < Dst min ≤ −100 nT, the combined drift loss and Dst effect can cause a complete dropout of the electron flux for r ≥ ∼5 R E at the end of the storm recovery. A nearly full recovery of the particle flux by the adiabatic Dst effect is seen only for r < ∼5 R E . For the moderate storm with −100 nT < Dst min ≤ −50 nT, the overall flux decrease level at the end of the storm recovery is less significant compared to that of the strong storm. However, the combined loss effect can still penetrate into r ∼ 5 R E , leading to some partial dropout of the flux. For the severe storm with Dst min ≤ −150 nT, the flux dropout is far more significant than for the other two storms, indicating that the combined drift loss and Dst effect can even reduce the flux level at an inner region of r ∼ 4 R E . But in this case, the solar wind dynamic pressure is so high that the dayside magnetopause can cross the geosynchronous orbit. Consequently, the flux dropouts seen in actual observations can be primarily attributed to a fast and direct loss to the magnetopause at times when the magnetopause crosses the geosynchronous orbit. It is possible that our numerical results may quantitatively change to some extent with different magnetospheric models and assumptions and may also change depending on the validity of the fully adiabatic invariants assumption.Citation: Kim, K. C., D.-Y. Lee, H.-J. Kim, E. S. Lee, and C. R. Choi (2010), Numerical estimates of drift loss and Dst effect for outer rad...
[1] Ionospheric convection is occasionally observed to be substantially enhanced even when the interplanetary magnetic field (IMF) is not strongly southward and the IMF B y is not large. Such enhanced convection flows tend to exhibit large oscillations with $10-30 min periodicity. We have considered the solar wind characteristics that lead to these oscillatory convection enhancements. We have used an extensive set of Sondrestrom radar observations of ionospheric convection within the dayside polar cap. We find that IMF ULF power is closely associated with the strength of dayside convection. Convection flows during periods of large north-south IMF fluctuations are observed to be as strong as for steady and large southward IMF periods. Enhanced convection is also observed during northward IMF intervals when the interplanetary magnetic field exhibits high ULF power. We find that ULF power enhances the convection strength, independent of an observed direct effect from the solar wind speed. These observations thus suggest that IMF ULF fluctuations can significantly influence ionospheric convection. Therefore, in addition to the well-established contributions from the direction and magnitude of the IMF and the solar wind dynamic pressure, ULF fluctuations may also be an important contributor to coupling of the solar wind to the magnetosphere-ionosphere system. We speculate that resonance between IMF fluctuations and natural magnetospheric oscillation frequencies or magnetopause boundary oscillations might be responsible for the connection between ionospheric convection and IMF ULF power. We have also found evidence for a connection between the ULF power in the solar wind dynamic pressure and the strength of convection.
[1] We have used examples of Poker Flat and Sondrestrom incoherent-scatter radar observations of flows within the ionospheric mapping of the nightside plasma sheet and of Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft observations within the nightside plasma sheet to investigate whether the features found in the companion paper by Kim et al. (2009) within the dayside polar cap are also seen within the nightside plasma sheet. We find evidence that this is indeed the case: intensified interplanetary ULF fluctuations substantially enhance nightside convection flows and the fluctuations are reflected in the fluctuation power of the nightside flows. Additionally, our observations show evidence for an enhancement of earthward convection within the inner plasma sheet and an increase in plasma pressure within the plasma sheet in association with enhanced interplanetary ULF fluctuations. We have also found evidence that the enhancement in convection and plasma sheet pressure associated with strong interplanetary fluctuations may lead to a dramatic increase in substorm occurrence under northward interplanetary magnetic field conditions. More detailed testing of the above results is needed. However, if corroborated, it would indicate that interplanetary ULF fluctuations have a substantial effect on global convection and are an important contributor to the large-scale transfer of solar wind energy to the magnetosphere-ionosphere system, to plasma sheet structure and dynamics, and to the occurrence of disturbances such as substorms.
Rapid injection of MeV electrons associated with strong substorm dipolarization has been suggested as a potential explanation for some radiation belt enhancement events. However, it has been difficult to quantify the contribution of MeV electron injections to radiation belt enhancements. This paper presents two isolated MeV electron injection events for which we quite precisely quantify how the entire outer‐belt immediately changed with the injections. Tracking detailed outer‐belt evolution observed by Van Allen Probes, for both events, we identify large step‐like relativistic electron enhancements (roughly 1 order of magnitude increase for ∼2 MeV electron fluxes) for L ≳ 3.8 and L ≳ 4.6, respectively, that occurred on ∼30‐min time scales nearly instantaneously with the injections. The enhancements occurred almost simultaneously for 10s keV to multi‐MeV electrons, with the lowest L of enhancement region located farther out for higher energy. The outer‐belt stayed at these new levels for ≳several hours without substantial subsequent enhancements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.