Many electroactive functional materials have been used in small-and microscale transducers and precision mechatronic control systems for years. It was not until the mid-1980s that scientists started integrating electroactive materials with large-scale structures as in situ sensors and/or actuators, thus introducing the concept of smart materials, smart structures, and structronic systems. This paper provides an overview of present smart materials and their sensor/actuator/structure applications. Fundamental multifield optomagnetopiezoelectric-thermoelastic behaviors and novel transducer technologies applied to complex multifield problems involving elastic, electric, temperature, magnetic, light, and other interactions are emphasized. Material histories, characteristics, material varieties, limitations, sensor/actuator/structure applications, and so forth of piezoelectrics, shape-memory materials, electro-and magnetostrictive materials, electro-and magnetorheological fluids, polyelectrolyte gels, superconductors, pyroelectrics, photostrictive materials, photoferroelectrics, magneto-optical materials, and so forth are thoroughly reviewed. INTRODUCTIONThe concepts of smart, intelligent, and adaptive materials and structures originated in the mid-1980s in an attempt to describe the newly emerging research area of integrating electroactive functional materials into large-scale structures as in situ sensors and actuators. Previously, electroactive materials had only been used in small-and microscale transducers and precision mechatronic (mechanical + electronic) control systems. The general perception of smart, intelligent, and adaptive materials or structures implies an ability to be clever, sharp, active, fashionable, and sophisticated. However, in reality, materials or structures can never achieve true intelligence or reasoning without the addition of artificial intelligence
Adaptive structures involving large imposed deformation often go beyond the boundary of linear theory and they should be treated as “nonlinear” structures. A generic nonlinear finite element formulation for vibration sensing and control analysis of laminated electro/elastic nonlinear shell structures is derived based on the virtual work principle. A generic curved triangular piezoelectric shell element is proposed based on the layerwise constant shear angle theory. The dynamic system equations, equations of electric potential output and feedback control force defined in a matrix form are derived. The modified Newton-Raphson method is adopted for nonlinear dynamic analysis of large and complex piezoelectric/elastic/control structures. A finite element code for vibration sensing and control analysis of nonlinear active piezoelectric structronic systems is developed. The developed piezoelectric shell element and finite element code are validated and then applied to control analysis of flexible electro-elastic (piezoelectric/elastic) structural systems. Vibration control of constant-curvature electro/elastic beam and plate systems are studied. Time-history responses of free and controlled nonlinear electro/elastic beam and plate systems are presented and nonlinear effects discussed.
Adaptive structures involving large imposed deformation often go beyond the boundary of linear theory and they should be treated as “nonlinear” structures. A generalized nonlinear finite element formulation for vibration sensing and control analysis of laminated electro/elastic nonlinear shell structures is derived based on the virtual work principle. A generic curved triangular piezoelectric shell element is proposed based on the layerwise constant shear angle theory. The dynamic system equations, equations of electric potential output and feedback control force defined in a matrix form are derived. The modified Newton-Raphson method is adopted for nonlinear dynamic analysis of large and complex piezoelectric/elastic/control structures. The developed piezoelectric shell element and finite element code are validated and then applied to control analysis of flexible electro-elastic (piezoelectric/elastic) structural systems. Vibration control of constant-curvature electro/elastic beam and plate systems is studied. Time-history responses of free and controlled nonlinear electro/elastic beam and plate systems are presented and nonlinear effects discussed.
This study is to evaluate distributed microscopic actuation characteristics and control actions of segmented magnetostrictive actuator patches laminated on a flexible cylindrical shell panel. A mathematical model and its modal domain governing equations of the cylindrical shell panel laminated with distributed magnetostrictive actuator patches are presented first, followed by the formulation of distributed magnetostrictive control forces and microcontrol actions including circumferential membrane∕bending and longitudinal bending control components. Transverse mode shape functions with simply supported boundary conditions are used in the modal control force expressions and the microcontrol action analyses. Control effectives and spatial characteristics of distributed actuators depend on applied magnetic fields and on geometrical (e.g., spatial segmentation, location, and shape) and material (i.e., various actuator materials) properties. Spatially distributed magnetoelectromechanical actuation characteristics contributed by circumferential membrane∕bending and longitudinal bending control actions are investigated. Distributed control forces and microactuations of a magnetostrictive actuator patch at various locations are analyzed, and modal-dependent spatial control effectiveness is evaluated.
Static shape actuation and dynamic control of nozzles can improve their performance, accuracy, reliability, etc. A new curved laminated piezothermoelastic hexahedral finite element is formulated based on the layerwise constant shear angle theory and it is used for modeling and analysis of piezothermoelastic conical shell structures subjected to control voltages for static shape actuation and dynamically and thermally induced vibration controls. Free vibration characteristics of an elastic truncated conical shell nozzle with fixed-free boundary conditions are studied using the new finite element. Both frequencies and mode shapes are accurately computed and compared favorably with available experimental and other numerical data. This study is then extended to evaluate control effectiveness of the conical shell with laminated piezoelectric layers. Static shape control is achieved by an applied electric potential. Vibration sensing and control are carried out using the negative velocity control scheme. Control of thermal excitation is also investigated. Analysis data suggest that the dynamic behavior and control characteristics of conical shells are quite complicated due to the coupled membrane and bending effects participating in the responses. To improve control effectiveness, segmentation and/or shaping of sensor and actuator layers need to be further investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.