Bisphosphonates are used with increasing frequency in the management of skeletal complications in patients with breast cancer. In this paper, we have investigated whether bisphosphonates, besides their known beneficial effects on tumor-associated osteoclastic resorption, are capable of inhibiting breast cancer cell adhesion to bone matrix. For that we used two in vitro models for bone matrix (cortical bone slices and cryostat sections of trabecular bone from neonatal mouse tails).Four bone matrix-bound nitrogen-containing bisphosphonates (pamidronate, olpadronate, alendronate, and ibandronate) inhibited adhesion and spreading of breast cancer cells to bone dose-dependently, whereas etidronate and clodronate had little or no effect. Strikingly, the relative order of potency of the bisphosphonates in inhibiting the adhesion of cancer cells to cortical and trabecular bone corresponded to their relative antiresorptive potencies in vivo as well as their ranking in in vitro bone resorption assays with predictive value for their clinical efficacy. It appears that nitrogen-containing bisphosphonates alter selectively the adhesive properties of the extracellular bone matrix preventing the attachment of breast cancer cells to it.Besides the beneficial effects of bisphosphonates on tumor-induced osteoclastic resorption, the previously unrecognized effect presented in this paper makes these agents suitable for earlier pharmacologic intervention in patients with breast cancer at risk of developing bone metastases.
Interactions between specific cell-surface molecules, which include the urokinase receptor (uPAR) and integrins, are crucial to processes of tumor invasion and metastasis. Here we demonstrate that uPAR and beta1-integrins may cluster at distinct sites at the cell surface of metastatic MDA-MB-231 breast cancer cells and form functional complexes. Attachment assays performed in the presence of a synthetic peptide (p25), which interferes with the formation of uPAR-integrin complexes, reveal that uPAR is able to regulate the adhesive function of integrins in breast cancer cells. On dissociation of the uPAR-integrin complexes by p25, tumor cell attachment to the extracellular matrix was either decreased (vitronectin) or increased (fibronectin). Moreover, the tumor cells display remarkable morphological changes when cultured on fibronectin in the continuous presence of p25, leading to increased cell spreading and attachment. In marked contrast to control conditions, increased cellular adhesion to fibronectin after p25 treatment was entirely beta1-integrin-mediated. The role of uPAR-integrin complexes in tumor progression was studied in an in vivo bone xenograft model. Stably transfected MDA-MB-231 cells that overexpress p25 showed a significant reduction in tumor progression in bone (P < or = 0.0001 versus mock-control). In line with these observations, continuous administration of p25 (25 microg/mouse/day, osmotic minipumps) for 28 days resulted in significantly reduced tumor progression of MDA-MB-231 cells in bone (P < or = 0.005) when compared to scrambled control peptide. In conclusion, our data demonstrate that uPAR can act as an adhesion receptor in breast cancer and is capable of regulating integrin function. Our findings strongly suggest that adhesive and proteolytic events are tightly associated in metastatic breast cancer cells and that functional integrin-uPAR complexes are involved in tumor progression in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.