A series of 2′-arylbenzaldehyde oxime ethers were synthesized and shown to generate the corresponding phenanthridines upon irradiation in the presence of 9,10-dicyanoanthracene in acetonitrile. Mechanistic studies suggest that the oxidative cyclization reaction sequence is initiated by an electron transfer step followed by nucleophilic attack of the aryl ring onto the nitrogen of the oxime ether. A concave downward Hammett plot is presumably the result of a change in charge distribution in the radical cation species with strongly electron-donating substituents that yields a less electrophilic nitrogen atom and a decreased amount of cyclized product. The reaction is selective (no nitrile byproduct is formed unlike other photochemical reactions involving aldoxime ethers) as well as regiospecific when using 2′-aryl groups with meta-substituents, making this reaction a useful alternative for preparing substituted phenanthridines.
The mechanistic aspects of the photosensitized reactions of a series of benzaldehyde oximes (1a-o) were studied by steady-state (product studies) and laser flash photolysis methods. Nanosecond laser flash photolysis studies have shown that the reaction of the oxime with triplet chloranil (3CA) proceeds via an electron-transfer mechanism provided the free energy for electron transfer (DeltaG(ET)) is favorable; typically, the oxidation potential of the oxime should be below 2.0 V. Substituted benzaldehyde oximes with oxidation potentials greater than 2.0 V quench 3CA at rates that are independent of the substituent and the oxidation potential. The most likely mechanism under these conditions is a hydrogen atom transfer mechanism as this reaction should be dependent on the O-H bond strength only, which is virtually the same for all oximes. Product studies have shown that aldoximes react to give both the corresponding aldehyde and the nitrile. The important intermediate in the aldehyde pathway is the iminoxyl radical, which is formed via an electron transfer-proton transfer (ET-PT) sequence (for oximes with low oxidation potentials) or via a hydrogen atom transfer (HAT) pathway (for oximes with larger oxidation potentials). The nitriles are proposed to result from intermediate iminoyl radicals, which can be formed via direct hydrogen atom abstraction or via an electron-transfer-proton-transfer sequence. The experimental data seems to support the direct hydrogen atom abstraction as evidenced by the break in linearity in the plot of the quenching rates against the oxidation potential, which suggests a change in mechanism. The nitrile product is favored when electron-accepting substituents are present on the benzene ring of the benzaldehyde oximes or when the hydroxyl hydrogen atom is unavailable for abstraction. The latter is the case in pyridine-2-carboxaldoxime (2), where a strong intramolecular hydrogen bond is formed. Other molecules that form weaker intramolecular hydrogen bonds such as 2-furaldehyde oxime (3) and thiophene-2-carboxaldoxime (4) tend to yield increasing amounts of aldehyde.
The mechanistic aspects of the photosensitized reactions of a series of oxime ethers were studied by steady-state (product studies) and laser flash photolysis methods. Nanosecond laser flash photolysis studies have shown that chloranil-sensitized reactions of the oxime ethers result in the formation of the corresponding radical cations. The radical cation species react with nucleophiles such as MeOH by clean second-order kinetics with rate constants of (0.7-1.4) x 10(6) M(-1) s(-1). Only a small steric effect is observed in these reactions, which is taken as an indication that the reaction center is not the O-alkyl moiety, but rather somewhere else in the molecule. Product studies in a polar nonnucleophilic solvent (MeCN) revealed that in order for the oxime ether radical cation to react more readily, alpha-protons must be available on the alkyl group. The O-methyl (1), O-ethyl (2), and O-benzyl (3) acetophenone oximes all reacted readily to give acetophenone oxime as the major product (as well as an aldehyde derived from the O-alkyl group), whereas O-tert-butyl acetophenone oxime (4) did not. The product formation can be explained by a mechanism that involves electron transfer followed by proton transfer (alpha to the oxygen) and subsequent beta-cleavage. When using 3 in MeOH, a change in the product formation is observed, the most important difference being the presence of benzyl alcohol rather than benzaldehyde as the major product. On the basis of the data from LFP and steady-state experiments, it is suggested that the competing mechanism under these conditions involves electron transfer, followed by a nucleophilic attack on the nitrogen, a MeOH-assisted [1,3]-proton transfer, and subsequent loss of benzyl alcohol. This mechanism is supported by DFT (B3LYP/6-31G) and AM1 calculations.
Oxidation of oximes via photosensitized electron transfer (PET) results in the formation of the corresponding ketones as the major product via oxime radical cations and iminoxyl radicals. The influence of electron-releasing and electron-accepting substituents on these reactions was studied. The observed substituent effect strongly supports formation of iminoxyl radicals from the oximes via an electron transfer-proton transfer sequence rather than direct hydrogen atom abstraction. Correlation of the relative conversion of the oximes with Hammett parameters shows that radical effects dominate for the meta-substituted acetophenone oximes (rho(rad)/rho(pol) = 5.4; r2 = 0.93), whereas the para-substituted oximes are influenced almost equally by radical and ionic effects (rho(rad)/rho(pol) = -1.1; r2 = 0.98). From these data sets we conclude that the follow-up reactions proceed through a number of intermediates with both radical and ionic character. This was confirmed by product studies with the use of an isotopically labeled nucleophile. In addition to the major oxidation product (ketone), a chlorine-containing product was often identified as well. Studies on the formation of this product show that the most likely pathway is either via a direct nucleophilic addition in a complex formed between the oxime radical cation and the chloranil radical anion or via a radical substitution (SH2) mechanism. These studies show that with the increasing use of oximes as drugs and pesticides, intake of these chemicals followed by enzymatic oxidation may result in the formation of a variety of reactive intermediates, which may lead to cell and tissue damage.
The thermal hydrodehalogenation of bromochlorodifluoromethane (Halon-1 21 1 ; CBrClF,) in the gas phase has been studied using a plug flow alumina reactor at atmospheric pressure over the temperature range 400-900 "C with residence times of 2-3 s and CBrCIF,/hydrogen molar intake ratios of ca. 10. Conversion of CBrClF, starts a t ca. 400 "C with C-Br bond homolysis followed by reaction with HX (X being Br, CI or H) to yield CHCIF,. At higher temperatures other products arise and complete conversion of CBrClF, is achieved a t ca. 600 "C. At temperatures above 850°C complete dehalogenation to mainly methane (yield 80%) is attained. In the temperature range 450-550 "C the (pseudo) first-order rate constant for the overall reaction (F) was found to obey: log (kJs9) = (9.4 k 1.5) -(150 k 25) kJ rnol-'/2.303RT.The thermolysis of CBrClF, was also studied using an excess of 2-phenylpropane (cumene) as a radical scavenger, resulting in the following Arrhenius expression for reaction (G): log (kJs-') = (15.1 k 0.5) -(262 k 9) kJ mol-'/2.303RT. From these parameters the bond dissociation energy for the C-Br bond in CBrCIF, was calculated to be 268 k 8 kJ mol-', leading to a heat of formation 'CCIF, + 'CCIF, C,Cl,F, (V) Paper 3/03922F
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.