The hydrocarbon systems of the Mesozoic, inverted West Netherlands Basin have been analyzed using 2-D forward modelling. Three source rocks are considered in the modelling: Lower Jurassic oil-prone shales, Westphalian gas-prone coal deposits, and Lower Namurian oil-prone shales. The Lower Namurian hydrocarbon system of the basin is discussed for the first time.According to the modelling results of the Early Jurassic oil system, the oil accumulations were filled just after the main inversion event. Their predicted locations are in agreement with exploration results. Modelling results of the Westphalian gas system, however, show smaller and larger sized accumulations at unexplored locations. The gas reservoirs were filled during the Late Jurassic-Early Cretaceous rifting phase. Results of modelling of the Lower Namurian oil system indicate that gas formed by secondary cracking of the oils can have mixed with the Westphalian coal-derived gas. Such a mixing is inferred from geochemical analyses. The existence of a Lower Namurian hydrocarbon system in the West Netherlands Basin implies that hydrocarbons are possibly trapped in the Westphalian and Namurian successions. These potential traps in the basin have not yet been explored.
ScopePursuant to a new law that will become effective in 2015, DINO, the national Dutch subsurface database operated by the Geological Survey of the Netherlands, is to become an official government register (a 'key register' / basisregistratie). In facing the responsibilities associated with this new status, the Survey is reconsidering and redesigning its operation and in that process a new, or at least sharper picture is emerging of geological surveying in the future.These developments set the final stages of a process of modernisation that geological survey organisations all over the world are currently entangled in (Allen, 2003;Jackson, 2010). Most surveys are replacing paper archives that were built in the AbstractOver the last ten to twenty years, geological surveys all over the world have been entangled in a process of digitisation. Their paper archives, built over many decades, have largely been replaced by electronic databases. The systematic production of geological map sheets is being replaced by 3D subsurface modelling, the results of which are distributed electronically. In the Netherlands, this transition is both being accelerated and concluded by a new law that will govern management and utilisation of subsurface information. Under this law, the Geological Survey of the Netherlands has been commissioned to build a key register for the subsurface: a single national database for subsurface data and information, which Dutch government bodies are obliged to use when making policies or decisions that pertain to, or can be affected by the subsurface. This requires the Survey to rethink and redesign a substantial part of its operation: from data acquisition and interpretation to delivery. It has also helped shape our view on geological surveying in the future.The key register, which is expected to start becoming operational in 2015, will contain vast quantities of subsurface data, as well as their interpretation into 3D models. The obligatory consultation of the register will raise user expectations of the reliability of all information it contains, and requires a strong focus on confidence issues. Building the necessary systems and meeting quality requirements is our biggest challenge in the upcoming years. The next step change will be towards building 4D models, which represent not only geological conditions in space, but also processes in time such as subsidence, anthropogenic effects, and those associated with global change.Keywords: Netherlands, applied geoscience, hydrogeology, geological surveying, mapping, geomodelling, geodatabase Netherlands Journal of Geosciences -Geologie en Mijnbouw | 92 -4 | 217-241 | 2013 217 course of many decades by electronic databases; many surveys started producing electronically distributed 3D subsurface models in addition to or instead of 2D geological maps that were their primary output since their establishment. For a variety of reasons explained below, the Dutch survey is among the early adapters in both respects.In this overview paper we present the Geological S...
This paper presents and discusses the distribution of fluid and leak-off pressure data from the subsurface of onshore and offshore Netherlands in relation to causes of formation fluid overpressure and the permeability framework. The observed fluid pressure conditions demonstrate a clear regional difference between the southern and the north and north-eastern part of the study area. In the southern area, formation fluid pressures are close to normal and well below measured leak-off pressures. In the north, formation fluids are overpressured and may locally even approach the measured leak-off pressures. The regional differences in fluid overpressure can, in large part, be explained by differences in geologic framework and burial history. In the south, relatively low rates of sedimentary loading and the presence of relatively permeable sedimentary units have led to the currently observed normally pressured conditions. In the northern area, relatively rapid Neogene sediment loading plays an important role in explaining the observed overpressure distributions in Cenozoic mudstones, Cretaceous Chalk and Rijnland groups, and probably also in Jurassic units. The permeability framework of the northern and north-eastern area is significantly affected by Zechstein and Triassic salt deposits and structures. These units are characterised by very low permeability and severely restrict fluid flow and pressure dissipation. This has created hydraulically restricted compartments with high overpressures (for example overpressures exceeding 30 MPa in the Lower Germanic Trias Group in the Terschelling Basin and Dutch Central Graben).
The deep subsurface temperature data of the Roer Valley Graben have been re-analysed and combined with new temperature data from hydrocarbon exploration wells. The results show that the deep subsurface temperature distribution in the Roer Valley Graben is essentially the same as in the relatively stable high bordering the Roer Valley Graben to the southwest. Thus, the Cenozoic tectonic evolution of the Roer Valley Graben, which is characterized by uplift and denudation during the Late Eocene and subsidence due to rifting starting from Late Oligocene, has hardly affected the temperatures in the graben, which is probably due to the slow subsidence and sedimentation rates. In contrast to what is suggested on previously published temperature maps, the Roer Valley Graben is probably not a relatively cold area in the Netherlands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.