When the rare earth mononitrides (RENs) first burst onto the scientific scene in the middle of last century, there were feverish dreams that their strong magnetic moment would afford a wide range of applications. For decades research was frustrated by poor stoichiometry and the ready reaction of the materials in ambient conditions, and only recently have these impediments finally been overcome by advances in thin film fabrication with ultra-high vacuum based growth technology. Currently, the field of research into the RENs is growing rapidly, motivated by the materials demands of proposed electronic and spintronic devices. Both semiconducting and ferromagnetic properties have been established in some of the RENs which thus attract interest for the potential to exploit the spin of charge carriers in semiconductor technologies for both fundamental and applied science. In this review, we take stock of where progress has occurred within the last decade in both theoretical and experimental fields, and which has led to the point where a proof-of-concept spintronic device based on RENs has already been demonstrated. The article is organized into three major parts. First, we describe the epitaxial growth of REN thin films and their structural properties, with an emphasis on their prospective spintronic applications. Then, we conduct a critical review of the different advanced theoretical calculations utilised to determine both the electronic structure and the origins of the magnetism in these compounds. The rest of the review is devoted to the recent experimental results on optical, electrical and magnetic properties and their relation to current theoretical descriptions. These results are discussed particularly with regard to the controversy about the exact nature of the magnetic state and conduction processes in the RENs.Comment: 34 pages, 14 figure
We report the growth of GdN thin films and a study of their structure and magnetic and conducting properties. It is demonstrated that they are semiconducting at ambient temperature with nitrogen vacancies the dominant dopant. The films are ferromagnetic below 68 K, and a significant narrowing of the band gap is signaled by more than a doubling of its conductivity. The conductivity in the low-temperature ferromagnetic state remains typical of a doped semiconductor, supporting the view that this material is semiconducting in its ground state and that no metal-insulator transition occurs at the Curie temperature.
We report measurements of the optical gap in a GdN film at temperatures from 300 to 6K, covering both the paramagnetic and ferromagnetic phases. The gap is 1.31eV in the paramagnetic phase and red-shifts to 0.9eV in the spin-split bands below the Curie temperature. The paramagnetic gap is larger than was suggested by very early experiments, and has permitted us to refine a (LSDA+U)-computed band structure. The band structure was computed in the full translation symmetry of the ferromagnetic ground state, assigning the paramagnetic-state gap as the average of the majority- and minority-spin gaps in the ferromagnetic state. That procedure has been further tested by a band structure in a 32-atom supercell with randomly-oriented spins. After fitting only the paramagnetic gap the refined band structure then reproduces our measured gaps in both phases by direct transitions at the X point.Comment: 5 pages, 4 figure
Epitaxial gadolinium nitride films with well-oriented crystallites of up to 30 nm have been grown on yttria-stabilized ziconia substrates using a plasma-assisted pulsed laser deposition technique. We observe that the epitaxial GdN growth proceeds on top of a gadolinium oxide buffer layer that forms via reaction between deposited Gd and mobile oxygen from the substrate. Hall effect measurements show the films are electron doped to degeneracy, with carrier concentrations of 4×1020 cm−3. Magnetic measurements establish a TC of 70 K with a coercive field that can be tuned from 200 Oe to as low as 10 Oe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.