Experiments with strong localized electron cyclotron heating (ECH) in the RTP tokamak show that electron heat transport is governed by alternating layers of good and bad thermal conduction. For central deposition hot T e filaments are observed inside the q = 1 radius. Moving the ECH resonance from the centre to the edge of the plasma results in discrete steps of the central electron temperature. The transitions occur when the minimum q value crosses q = 1, 2, 5/2 or 3, and correspond to the loss of a transport barrier situated close to the rational q value. Close to the transitions a new type of sawtooth activity is observed, characterized by the formation of sharp off-axis maxima on the T e profile, which collapse abruptly. The formation of the off-axis maxima is attributed to heat deposition precisely 'on top of' a transport barrier.
Magnum-PSI is an advanced linear plasma device uniquely capable of producing plasma conditions similar to those expected in the divertor of ITER both steady-state and transients. The machine is designed both for fundamental studies of plasma-surface interactions under high heat and particle fluxes, and as a high-heat flux facility for the tests of plasma-facing components under realistic plasma conditions. To study the effects of transient heat loads on a plasma-facing surface, a novel pulsed plasma source system as well as a high power laser are available. In this article, we will describe the capabilities of Magnum-PSI for high-heat flux tests of plasma-facing materials.
The operation of a cascaded arc hydrogen plasma source was experimentally investigated to provide an empirical basis for the scaling of this source to higher plasma fluxes and efficiencies. The flux and efficiency were determined as a function of the input power, discharge channel diameter, and hydrogen gas flow rate. Measurements of the pressure in the arc channel show that the flow is well described by Poiseuille flow and that the effective heavy particle temperature is approximately 0.8 eV. Interpretation of the measured I -V data in terms of a one-parameter model shows that the plasma production is proportional to the input power, to the square root of the hydrogen flow rate, and is independent of the channel diameter. The observed scaling shows that the dominant power loss mechanism inside the arc channel is one that scales with the effective volume of the plasma in the discharge channel. Measurements on the plasma output with Thomson scattering confirm the linear dependence of the plasma production on the input power. Extrapolation of these results shows that ͑without a magnetic field͒ an improvement in the plasma production by a factor of 10 over where it was in van Rooij et al. ͓Appl. Phys. Lett. 90, 121501 ͑2007͔͒ should be possible.
The main challenge for the Thomson scattering (TS) diagnostic on the TEXTOR tokamak is the detailed study of fast plasma events at a high spatial resolution and a high repetition rate of the measurements. The diagnostic uses intra-cavity probing of the plasma with a repetitively pulsed ruby laser and a fast CMOS camera as detectors. Since 2004, the TS system on TEXTOR has been gradually and systematically enhanced for the measurements of fast plasma events. For that it has recently been upgraded to obtain a multi-pass configuration. Two spherical mirrors have been installed that force the laser beam to probe the plasma a specified number of times before it is directed back into the laser medium. The diagnostics with the upgraded probing system have achieved the measurement accuracy of 3% for the electron temperature and 1.5% for the electron density at <1 cm spatial resolution and 3 × 10 19 m −3 plasma density and can measure at 5 kHz during an interval up to 8 ms. This makes it possible to detect, amongst others, fine structures of magnetic islands and variations of the edge pedestal in the ELMy limiter H-mode.
The Magnum-PSI facility is available for plasma-material interaction studies. • Magnum-PSI is capable to reach relevant plasma parameters for the ITER divertor. • Particle fluxes over 10 25 m-2 s-1 and heat fluxes of up to 50 MWm-2 are obtained. • Particle fluences of up to 10 30 particles m-2 have been achieved. • Linear regression and artificial neural network analysis have been applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.