DNA metabarcoding is an important tool for molecular ecology. However, its effectiveness hinges on the quality of reference sequence databases and classification parameters employed. Here we evaluate the performance of MiFish 12S taxonomic assignments using a case study of California Current Large Marine Ecosystem fishes to determine best practices for metabarcoding. Specifically, we use a taxonomy cross‐validation by identity framework to compare classification performance between a global database comprised of all available sequences and a curated database that only includes sequences of fishes from the California Current Large Marine Ecosystem. We demonstrate that the regional database provides higher assignment accuracy than the comprehensive global database. We also document a tradeoff between accuracy and misclassification across a range of taxonomic cutoff scores, highlighting the importance of parameter selection for taxonomic classification. Furthermore, we compared assignment accuracy with and without the inclusion of additionally generated reference sequences. To this end, we sequenced tissue from 597 species using the MiFish 12S primers, adding 252 species to GenBank's existing 550 California Current Large Marine Ecosystem fish sequences. We then compared species and reads identified from seawater environmental DNA samples using global databases with and without our generated references, and the regional database. The addition of new references allowed for the identification of 16 additional native taxa representing 17.0% of total reads from eDNA samples, including species with vast ecological and economic value. Together these results demonstrate the importance of comprehensive and curated reference databases for effective metabarcoding and the need for locus‐specific validation efforts.
ABSTRACT. Schindleria brevipinguis n.sp., from the Lizard Island-Carter Reef vicinity of the Great Barrier Reef, Australia and from Osprey Reef nearby in the Coral Sea, is a small, unpigmented gobioid species distinctive in having fewer dorsal-and anal-fin rays and a deeper body with larger eyes than the other described species, S. pietschmanni and S. praematura. The urogenital papilla of male S. brevipinguis has a markedly different shape from those of the other two species. Schindleria brevipinguis apparently provides an even more extreme example of paedomorphosis than its congeners, and with males maturing by 7 mm and the largest specimen only 8.4 mm, it almost certainly is the world's smallest fish and smallest vertebrate.
Museum fish collections possess a wealth of anatomical and morphological data that are essential for documenting and understanding biodiversity. Obtaining access to specimens for research, however, is not always practical and frequently conflicts with the need to maintain the physical integrity of specimens and the collection as a whole. Non-invasive three-dimensional (3D) digital imaging therefore serves a critical role in facilitating the digitization of these specimens for anatomical and morphological analysis as well as facilitating an efficient method for online storage and sharing of this imaging data. Here we describe the development of the Digital Fish Library (DFL, http://www.digitalfishlibrary.org ), an online digital archive of high-resolution, high-contrast, magnetic resonance imaging (MRI) scans of the soft tissue anatomy of an array of fishes preserved in the Marine Vertebrate Collection of Scripps Institution of Oceanography. We have imaged and uploaded MRI data for over 300 marine and freshwater species, developed a data archival and retrieval system with a web-based image analysis and visualization tool, and integrated these into the public DFL website to disseminate data and associated metadata freely over the web. We show that MRI is a rapid and powerful method for accurately depicting the in-situ soft-tissue anatomy of preserved fishes in sufficient detail for large-scale comparative digital morphology. However these 3D volumetric data require a sophisticated computational and archival infrastructure in order to be broadly accessible to researchers and educators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.