Glycans have an immense number of biological activities, necessitating increased efforts to characterize glycan structures. Mass spectrometry has been coupled to electrospray ionization (ESI) to characterize carbohydrates. While the gas-phase structures of glycan− and carbohydrate−metal adducts have been characterized, several questions persist concerning the mechanism of transfer of carbohydrates from ESI droplets into the gas phase. Using various computational methods, including molecular dynamics, steered molecular dynamics, and density functional theory calculations, we present a mechanistic investigation on the evaporation of solvent from nanosized droplets, formation of carbohydrate−metal adducts, and their subsequent release into the gas phase. We relate the computational results to mass spectra of melezitose, a model carbohydrate, and its permethylated derivative. Our results confirm two mechanisms for the release of carbohydrate−ion adducts from solvated droplets. Native (unmodified) carbohydrates are ionized via the charged residue model, while the permethylated derivative is ionized via the ion evaporation model. For both mechanisms, the monomer carbohydrate−metal adduct is the dominant species observed. This work illustrates that the ionization mechanisms are dictated by interactions between the carbohydrate and solvent, and coordination of the carbohydrate with the metal ion. Thus, these results provide insight into the molecular interactions that govern the mechanism of release.
Characterizing glycans is analytically challenging since glycans are heterogeneous, branched polymers with different three-dimensional conformations. Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has been used to analyze native conformations and dynamics of biomolecules by measuring the mass increase of analytes as labile protons are replaced with deuterium following exposure to deuterated solvents. The rate of exchange is dependent on the chemical functional group, the presence of hydrogen bonds, pH, temperature, charge, and solvent accessibility. HDX-MS of carbohydrates is challenging due to the rapid exchange rate of hydroxyls. Here, we describe an observed HDX reaction associated with residual solvent vapors saturating electrospray sources. When undeuterated melezitose was infused after infusing DO, samples with up to 73% deuterium exchange were detected. This residual solvent HDX was observed for both carbohydrates and peptides in multiple instruments and dependent on sample infusion rate, infusion time, and deuterium content of the solvent. This residual solvent HDX was observed over several minutes of sample analysis and persisted long enough to alter the measured deuterium labeling and possibly change the interpretation of the results. This work illustrates that residual solvent HDX competes with in-solution HDX for rapidly exchanging functional groups. Thus, we propose conditions to minimize this effect, specifically for top-down, in-electrospray ionization, and quench-flow HDX experiments. Graphical Abstract ᅟ.
Microsecond reaction times for in-droplet hydrogen/deuterium exchange of carbohydrate hydroxyls have been varied by changing the opening sizes of theta-electrospray emitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.