The energy spectrum of Galactic cosmic-ray (GCR) ions at Earth varies with solar activity as these ions cross the heliosphere. Thus, this “solar modulation” of GCRs provides remote sensing of heliospheric conditions throughout the ∼11 yr sunspot cycle and ∼22 yr solar magnetic cycle. A neutron monitor (NM) is a stable ground-based detector that measures cosmic-ray rate variations above a geomagnetic or atmospheric cutoff rigidity with high precision (∼0.1%) over such timescales. Furthermore, we developed electronics and analysis techniques to indicate variations in the cosmic-ray spectral index using neutron time-delay data from a single station. Here we study solar modulation using neutron time-delay histograms from two high-altitude NM stations: (1) the Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity, 16.7 GV, from 2007 December to 2018 April; and (2) the South Pole NM, with an atmosphere-limited cutoff of ∼1 GV, from 2013 December to 2018 April. From these histograms, we extract the leader fraction L, i.e., inverse neutron multiplicity, as a proxy of a GCR spectral index above the cutoff. After correction for pressure and precipitable water vapor variations, we find that L roughly correlates with the count rate but also exhibits hysteresis, implying a change in spectral shape after a solar magnetic polarity reversal. Spectral variations due to Forbush decreases, 27 day variations, and a ground-level enhancement are also indicated. These methods enhance the high-precision GCR spectral information from the worldwide NM network and extend it to higher rigidity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.