Collaborative filtering (CF), the most successful information filtering technique for recommender systems, is either memory-based or model-based. While the former is more accurate, its scalability compared to model-based is poor. Moreover, the similarity functions used by most recommender systems are compensatory and allow very high (pros) and very low (cons) scores to compensate each other. This paper presents a hybrid movie recommender system that retains memory-based CF accuracy, model-based CF scalability, and alleviates the compensation problem of similarity functions. The proposed recommender system relies on a compact user model and fuzzy concordance / discordance principle. The user model speeds up the online process of generating a set of like-minded users within which a memory-based CF is carried out. The inter users comparison is done by using fuzzy concordance / discordance principle to alleviate the similarity compensation problem. The pros and cons between users are measured separately and then the overall statement about them is obtained by balancing the pros and cons within the set of criteria. Besides our approach is fast and compact, computational results reveal that it outperforms the classical one.
Today, the surveillance systems and other monitoring systems are considering the capturing of image sequences in a single frame. The captured images can be combined to get the mosaiced image or combined image sequence. But the captured image may have quality issues like brightness issue, alignment issue (correlation issue), resolution issue, manual image registration issue etc. The existing technique like cross correlation can offer better image mosaicing but faces brightness issue in mosaicing. Thus, this paper introduces two different methods for mosaicing i.e., (a) Sliding Window Module (SWM) based Color Image Mosaicing (CIM) and (b) Discrete Cosine Transform (DCT) based CIM on Field Programmable Gate Array (FPGA). The SWM based CIM adopted for corner detection of two images and perform the automatic image registration while DCT based CIM aligns both the local as well as global alignment of images by using phase correlation approach. Finally, these two methods performances are analyzed by comparing with parameters like PSNR, MSE, device utilization and execution time. From the analysis it is concluded that the DCT based CIM can offers significant results than SWM based CIM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.