A sample of AISI type 316 stainless steel from a power station steam header, showing reheat cracking, was removed from service and has been examined by a combination of microscale X-ray computed tomography (CT), nanoscale serial section focused ion beam–scanning electron microscopy (FIB-SEM), energy dispersive X-ray (EDX) spectrum imaging and transmission electron microscopy (TEM). Multiscale three-dimensional analysis using correlative tomography allowed key regions to be found and analysed with high resolution techniques. The grain boundary analysed was decorated with micrometre sized, facetted cavities, M23C6 carbides, ferrite and G phase but no σ phase. Smaller intragranular M23C6 particles were also observed, close to the grain boundaries. This intimate coexistence suggests that the secondary phases will control the nucleation and growth of the cavities. Current models of cavitation, based on isolated idealised grain boundary cavities, are oversimplified.
SummaryThe use of high-resolution electron backscatter diffraction in the scanning electron microscope to quantify the volume fraction of recrystallization and the recrystallization kinetics is discussed. Monitoring the changes of high-angle grain boundary (HAGB) content during annealing is shown to be a reliable method of determining the volume fraction of recrystallization during discontinuous recrystallization, where a large increase in the percentage of high-angle boundaries occurs during annealing. The results are shown to be consistent with the standard methods of studying recrystallization, such as quantitative metallography and hardness testing. Application of the method to a highly deformed material has shown that it can be used to identify the transition from discontinuous to continuous recrystallization during which there is no significant change in the percentage of HAGB during annealing.
A study of creep cavities near reheat cracking in AISI Type 316H austenitic stainless steel headers, removed from prolonged high temperature operation in nuclear power plants, is reported. It is shown how application of scanning electron microscopy (SEM), cryogenic fractography and small angle neutron scattering (SANS) can be applied, in a complementary way, to observe and quantify creep cavitation. Creep cavities in the vicinity of the crack are found to be mainly surrounding inter-granular carbides. Trends in the size and area fraction of creep cavities relative to the crack path are quantified using optimised metallography. The SANS technique is found to be a very suitable method of quantifying creep cavitation within the size range up to 600 nm averaged over a larger gauge volume. It is shown that the cavity size distribution peaks in the region 100–300 nm, and this correlates closely with the quantitative SEM observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.