Monitoring depth of anesthesia (DOA) via vital signs is a major ongoing challenge for anesthetists. A number of electroencephalogram (EEG)-based monitors such as the Bispectral (BIS) index have been proposed. However, anesthesia is related to central and autonomic nervous system functions whereas the EEG signal originates only from the central nervous system. This paper proposes an automated DOA detection system which consists of three steps. Initially, we introduce multiscale modified permutation entropy index which is robust in the characterization of the burst suppression pattern and combine multiscale information. This index quantifies the amount of complexity in EEG data and is computationally efficient, conceptually simple and artifact resistant. Then, autonomic nervous system activity is quantified with heart rate and mean arterial pressure which are easily acquired using routine monitoring machine. Finally, the extracted features are used as input to a linear discriminate analyzer (LDA). The method is validated with data obtained from 25 patients during the cardiac surgery requiring cardiopulmonary bypass. The experimental results indicate that an overall accuracy of 89.4 % can be obtained using combination of EEG measure and hemodynamic variables, together with LDA to classify the vital sign into awake, light, surgical and deep anesthetised states. The results demonstrate that the proposed method can estimate DOA more effectively than the commercial BIS index with a stronger artifact-resistance.
Distinguishing between awake and anesthetized states is one of the important problems in surgery. Vital signals contain valuable information that can be used in prediction of different levels of anesthesia. Some monitors based on electroencephalogram (EEG) such as the Bispectral (BIS) index have been proposed in recent years. This study proposes a new method for characterizing between awake and anesthetized states. We validated our method by obtaining data from 25 patients during the cardiac surgery that requires cardiopulmonary bypass. At first, some linear and non-linear features are extracted from EEG signals. Then a method called "LLE"(Locally Linear Embedding) is used to map high-dimensional features in a three-dimensional output space. Finally, low dimensional data are used as an input to a quadratic discriminant analyzer (QDA). The experimental results indicate that an overall accuracy of 88.4 % can be obtained using this method for classifying the EEG signal into conscious and unconscious states for all patients. Considering the reliability of this method, we can develop a new EEG monitoring system that could assist the anesthesiologists to estimate the depth of anesthesia accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.