Every year worldwide more than one million people die and a further 50 million people are injured in traffic accidents. Therefore, the development of car safety features that actively support the driver in preventing accidents, is of utmost importance to reduce the number of injuries and fatalities. However, to establish this support it is necessary that the advanced driver assistance system (ADAS) understands the driver's intended behavior in advance. The growing variety of sensors available for vehicles together with improved computer vision techniques, hence led to increased research directed towards inferring the driver's intentions. This article reviews 64 driver intention recognition studies with regard to the maneuvers considered, the driving features included, the AI methods utilized, the achieved performance within the presented experiments, and the open challenges identified by the respected researchers. The article provides a high level analysis of the current technology readiness level of driver intention recognition technology to address the challenges to enable reliable driver intention recognition, such as the system architecture, implementation, and the purpose of the technology.
We present a model of behavior that unifies behavior-based acting and conversational policies for speaking. This model is applied to the domain of air traffic control.
Clustering is a core problem within a wide range of research disciplines ranging from machine learning and data mining to classical statistics. A group of clustering approaches so-called nonparametric methods, aims to cluster a set of entities into a beforehand unspecied and unknown number of clusters, making potentially expensive pre-analysis of data obsolete. In this paper, the recently, by Côté and Larochelle introduced in nite Restricted Boltzmann Machine that has the ability to self-regulate its number of hidden parameters is adapted to the problem of clustering by the introduction of two basic cluster membership assumptions. A descriptive study of the in uence of several regularization and sparsity settings on the clustering behavior is presented and results are discussed. The results show that sparsity is a key adaption when using the iRBM for clustering that improves both the clustering performances as well as the number of identi ed clusters. CCS CONCEPTS • Computing methodologies → Unsupervised learning; Cluster analysis;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.