This study investigated interobserver (two observers) and intrasubject (two measurements) reproducibility of QT dispersion from abnormal electrocardiograms in patients with previous myocardial infarction, and compared a user-interactive with an automatic measurement system. Standard 12-lead electrocardiograms, recorded at 25 mm.s-1, were randomly chosen from 70 patients following myocardial infarction. These were scanned into a personal computer, and specially designed software skeletonized and joined each image. The images were then available for user-interactive (mouse and computer screen), or automatic measurements using a specially designed algorithm. For all methods reproducibility of the RR interval was excellent (mean absolute errors 3-4 ms, relative errors 0.3-0.5%). Reproducibility of the mean QT interval was good; intrasubject error was 6 ms (relative error 1.4%), interobserver error was 7 ms (1.8%), and observers' vs automatic measurement errors were 10 and 11 ms (2.5, 2.8%). However QTc dispersion measurements had large errors for all methods; intrasubject error was 12 ms (17.3%), interobserver error was 15 ms (22.1%), and observers' vs automatic measurement were errors 30 and 28 ms (35.4, 31.9%). QT dispersion measurements rely on the most difficult to measure QT intervals, resulting in a problem of reproducibility. Any automatic system must not only recognize common T wave morphologies, but also these more difficult T waves, if it is to be useful for measuring QT dispersion. The poor reproducibility of QT dispersion limits its role as a useful clinical tool, particularly as a predictor of events.
The paper describes the design and construction of a selective surface electrode for use in a clinical environment. The main criterion of the design was to enable the recognition of individual motor unit action potential trains (MUAPTs) at moderate force levels. The main features of the electrode are, first, a small concentric bipolar arrangement to avoid electrode/muscle fibre alignment problems and to allow measurements within a small, well defined probed volume; secondly, the non-requirement for conducting paste or gel; and thirdly, the casing acting as an earth plate. All of these simplify its use. The results of tests undertaken with the electrode showed that it was able to pick up individual MUAPTs at up to 20 per cent of maximum voluntary contraction from the first dorsal interosseous muscle. Tests were carried out on the small hand muscles to further demonstrate the usefulness of the electrode. A computer program was written to calculate the shift in frequency of the power spectrum of the recorded myoelectric signal with muscle fatigue and hence indirectly to demonstrate the ability of the electrode to detect the reduction in muscle fibre conduction velocity.
Recent research suggests that the dispersion of QT intervals across 12 leads of the standard electrocardiogram (ECG) is a clinically important indicator of the susceptibility of patients to serious ventricular arrhythmias. This hypothesis can be further tested by measuring E C G from large clinical trials in which outcome is known for each patient. These ECGs are stored on paper. We have developed a system which scans ECG waveforms stored on paper, ana' converts them to digital data stored on computer. The system which incorporates a user-interface, enables quick and reliable measurements of QT intervals, thereby replacing the tedious and potentially insensitive method of hand measurements. Preliminary results of comparison between hand and user-interactive measurements are presented to show the accuracy and characteristics of the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.