The human brain is an extremely complex system of 10-10 neurons. To construct brain-like neuromorphic hardware, the neuron unit should be implemented effectively. Here, we report a neuron transistor based on a MoS flake, which has summation and threshold functions similar to biological neurons and may act as a basic neuron unit in neuromorphic hardware. The neuron transistor is composed of a floating gate and two control gates. A heavily doped silicon substrate serves as the floating gate, while the two control gates are capacitively coupled with the floating gate. The neuron transistor can be well controlled by the two control gates individually or simultaneously. The drain current can be modulated by the input voltages at the control gates. While the current response of the neuron transistor has a large dependence on the magnitude of the input signal, it shows little dependence on the frequency of the input signal. To demonstrate the potential neuromorphic application of the neuron transistor, functions including abacus-like function, AND logic and OR logic are realized in the neuron transistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.