Soil temperature is an essential factor for agricultural, meteorological, and hydrological applications. Direct measurement, despite its high accuracy, is impractical on a large spatial scale due to the expensive and time-consuming process. On the other hand, the complex interaction between variables affecting soil temperature, such as topography and soil properties, leads to challenging estimation processes by empirical methods and physical models. Machine learning (ML) approaches gained considerable attention due to their ability to address the limitations of empirical and physical methods. These approaches are capable of estimating the variables of interest using complex nonlinear relationships with no assumptions about data distribution. However, their sensitivity to input data as well as the need for a large amount of training ground truth data limits the application of machine learning approaches. The current paper aimed to provide a review of ML techniques implemented for soil temperature modeling, their challenges, and milestones achieved in this domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.