The perovskite manganites with generic formula RE(1-x)AE(x)MnO(3) (RE = rare earth, AE = Ca, Sr, Ba and Pb) have drawn considerable attention, especially following the discovery of colossal magnetoresistance (CMR). The most fundamental property of these materials is strong correlation between structure, transport and magnetic properties. They exhibit extraordinary large magnetoresistance named CMR in the vicinity of the insulator-metal/paramagnetic-ferromagnetic transition at relatively large applied magnetic fields. However, for applied aspects, occurrence of significant CMR at low applied magnetic fields would be required. This review consists of two sections: in the first section we have extensively reviewed the salient features, e.g. structure, phase diagram, double-exchange mechanism, Jahn-Teller effect, different types of ordering and phase separation of CMR manganites. The second is devoted to an overview of experimental results on CMR and related magnetotransport characteristics at low magnetic fields for various doped manganites having natural grain boundaries such as polycrystalline, nanocrystalline bulk and films, manganite-based composites and intrinsically layered manganites, and artificial grain boundaries such as bicrystal, step-edge and laser-patterned junctions. Some other potential magnetoresistive materials, e.g. pyrochlores, chalcogenides, ruthenates, diluted magnetic semiconductors, magnetic tunnel junctions, nanocontacts etc, are also briefly dealt with. The review concludes with an overview of grain-boundary-induced low field magnetotransport behavior and prospects for possible applications.
Easy, accurate, inexpensive, and nondestructive methods to determine individual leaf area of plants are a useful tool in physiological and agronomic studies. This paper introduces a cost-effective alternative (called here millimeter graph paper method) for standard electronic leaf area meter, using a millimeter graph paper. Investigations were carried out during August–October, 2009-2010, on 33 species, in the Botanical garden of the Banaras Hindu University at Varanasi, India. Estimates of leaf area were obtained by the equation, leaf area (cm2) =x/y, wherexis the weight (g) of the area covered by the leaf outline on a millimeter graph paper, andyis the weight of one cm2of the same graph paper. These estimates were then compared with destructive measurements obtained through a leaf area meter; the two sets of estimates were significantly and linearly related with each other, and hence the millimeter graph paper method can be used for estimating leaf area in lieu of leaf area meter. The important characteristics of this cost-efficient technique are its easiness and suitability for precise, non-destructive estimates. This model can estimate accurately the leaf area of plants in many experiments without the use of any expensive instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.