The utilization of class F fly ash (F-FA) is limited to 15–30% as a substitution for cement. The study intends to tap into the potential of high-volume F-FA as a pozzolan and micro filler by eliminating aggregates. The article presents the long-term behavior of a novel cement composite called no-aggregate concrete (NAC), incorporating 20% ordinary Portland cement (OPC) and 80% F-FA, with polypropylene (PP) fibers in 0.6, 0.8, and 1.0% volume fractions, in a corrosive environment. The bulk diffusion of preconditioned 100 mm cubes reveals that all mixtures’ chloride-binding capacity increases significantly with prolonged exposure. The total chloride content for mixtures M1, M2, and M3 is within acceptable limits as per EN 206. M4 with 1.0% PP fibers shows a higher total chloride content at 2 cm depth. The average chloride content for all mixtures is within 0.4%. The compressive strength of mixtures cured in water is about 90 MPa at 730 days, and is severely affected in the absence of fibers in a corrosive environment. The microstructure of mixtures at 730 days displays a cohesive, compact, continuous matrix, and the presence of unreacted F-FA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.