A nearly uniform shear flow, was obtained in the working section of a wind tunnel by inserting a grid of parallel rods with varying spacing.The function of such a grid is to impose a resistance to the flow, so graded across the working section as to produce a linear variation in the total pressure at large distances downstream without introducing an appreciable gradient in static pressure near the grid. A method of calculating a suitable arrangement of the rods is described. Although this method is strictly applicable only to weakly sheared flows, an experiment made with a grid designed for a shear parameter as large as 0·45 gave results in close agreement with the theory. There was no evidence from the experiment of any large-scale secondary flow accompanying the shear–a danger inherent in an empirical attempt to grade the resistance of the grid–nor was any tendency observed for the shear to decay with increasing distance from the grid.
The density distribution in the relaxation regions of shock waves in carbon dioxide were determined in the Mach number range 1·4 to 4·0 using an interferometer. The over-all density ratios were found to agree with the theoretical final equilibrium values. Detailed analysis of the relaxation regions showed that the simple relaxation equation is inadequate, the relaxation frequency depending on departures from equilibrium as well as on temperature.
The one-dimensional problem of shock-wave reflexion with relaxation is treated numerically by combining the shock-wave, characteristic, and Rayleigh-line equations. The theoretical results are compared with pressure and density measurements in CO2, and the agreement is found to be excellent.
Previous results on the over-all density ratio of shock waves in CO2, confirming experimentally the theoretical equilibrium value, have been extended to a shock Mach number of 7·3. The discrepancy between our results and earlier Princeton results approaches 18% at a Mach number of 7. Possible reasons for this are discussed, with particular reference to the interferometer technique, but no explanation has been found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.