Twenty-two male soccer players (mean age 21.3 yrs) performed an incremental, multistage bicycle ergometer exercise test with work load increasing by 50 W, until volitional exhaustion. The exercise stages lasted 3 min and were separated by 1 min resting periods. Before exercise and during each load an audio-visual five-choice reaction task was administered to assess subjects' psychomotor performance. During resting intervals venous blood samples were taken for lactate (LA), adrenaline (A) and noradrenaline (NA) determinations. It was found that reaction time (RT) decreased gradually during exercise reaching its minimum (approx. 87% of pre-exercise value) at load 236 W (approx. 75% VO2max, HR 164 beats/min). Then, it increased rapidly, exceeding the resting level by 18%. The work load and heart rate (HR) associated with the minimal RT were higher (p < 0.001) than work load and HR associated with the LA threshold (by 46 W and 17 beats/min, respectively). Plasma A and NA showed an exponential increase during exercise with thresholds at 204 and 208 W, respectively (HR 149 and 154 beats/min). Work load at which plasma NA threshold occurred was significantly higher than the LA threshold but it did not differ from the work load associated with the minimal RT. Conversely, plasma A threshold was lower than the load of the minimal RT but did not differ significantly from LA threshold. It is concluded that young athletes continue to improve their psychomotor performance during exercise even at heavy work loads exceeding anaerobic, and plasma adrenaline thresholds. A relationship between reaction time and plasma catecholamines fits the U-shape curve.
Women differ from men in thermal responses to exogenous heat load and heat loss as well as to endogenous heat load during exercise, because they usually have a larger ratio of body surface to body mass, a greater subcutaneous fat content, and lower exercise capacity. When these differences are eliminated in experimental studies, it appears that women's sweating response to heat load is still smaller than that of men, but they are able to maintain their core body temperature on a similar level to that of men as a result of greater evaporative efficiency of sweating. In addition, the changing rate of sex hormone release during the menstrual cycle modifies thermoregulation in women, so there are differences in resting body temperature and thermal responses to positive or negative heat loads depending on the phase of the cycle. In this review, the changes in thermoregulation in young women taking oral contraceptives and those associated with the menopause and hormonal replacement therapy are also described.
The muscle contents of high-energy phosphates and their derivatives [ATP, ADP, AMP, creatine phosphate (CrP), and creatine], glycogen, some glycolytic intermediates, pyruvate, and lactate were compared in 11 dogs performing prolonged heavy exercise until exhaustion (at ambient temperature 20.0 +/- 1.0 degrees C) without and with trunk cooling using ice packs. Without cooling, dogs were able to run for 57 +/- 8 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 +/- 0.2 and 43.0 +/- 0.2 degrees C, respectively. Compared with noncooling, duration of exercise with cooling was longer by approximately 45% while Tre and Tm at the time corresponding to the end of exercise without cooling were lower by 1.1 +/- 0.2 and 1.2 +/- 0.2 degrees C, respectively. The muscle contents of high-energy phosphates (ATP + CrP) decreased less, the rate of glycogen depletion was lower, and the increases in the contents of AMP, pyruvate, and lactate as well as in the muscle-to-blood lactate ratio were smaller. The muscle content of lactate was positively correlated with Tm. The data indicate that with higher body temperature equilibrium between high-energy phosphate breakdown and resynthesis was shifted to the lower values of ATP and CrP and glycolysis was accelerated. The results suggest that hyperthermia developing during prolonged muscular work exerts an adverse effect on muscle metabolism that may be relevant to limitation of endurance.
Previous investigations from this laboratory have demonstrated that during graded exercise with exercise intensities increasing every 3 min until exhaustion the multiple choice reaction time (RT) decreased until the intensity exceeded the lactate threshold (LT) by approximately 25%, and then rapidly increased. The aim of this study was to follow up changes in RT during prolonged exercise at constant intensities above and below LT and to relate these changes to changes in venous blood lactate [La-]b, and plasma catecholamine [CA]pl concentration responses to the exercise. For this purpose eight young soccer players exercised for 20-min on a cycle ergometer at 10% above LT, and nine exercised for 60 min at an intensity 30% below LT. During both tests RT, heart rate (HR), as well as [La-]b, and [CA]pl were measured. Above LT, RT decreased from the 5th min until the end of exercise, whilst HR, [La-]b, and [CA]pl increased progressively. Significant inverse correlations were ascertained between RT and plasma adrenaline (r = -0.651) and noradrenaline concentrations (r = -0.678). During exercise below LT, RT decreased up to approximately 40 min, then it reached a nadir, and stabilized at this level. This was accompanied by only small changes in [La-]b and [CA]pl. The present findings would indicate that young athletes are able to maintain for a relatively long time, or even increase, their psychomotor performance during endurance exercise both below and above the LT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.