We examined effects of late-season heat stress (L-SHS) on chlorophyll (Chl) fluorescence parameters and yield of bread wheat as well as roles of phosphate bio-fertilizer (PB-F) and Zn and B to compensate for the likely effects of heat stress. Factors were planting date (21 November and 5 January to coincide with grain filling to L-SHS) as the main factor, no inoculation (control) and inoculation of the seeds with PB-F as the sub-factor, and foliar application of water (control), Zn, B, and Zn + B as 3 L ha -1 as sub-sub factor. Results revealed that L-SHS reduced maximal quantum yield of PSII photochemistry, effective quantum yield of PSII photochemistry, efficiency of PSII in the light-adapted state, and the grain yield. Moreover, L-SHS increased the nonphotochemical quenching. The PB-F mitigated the effects of L-SHS on Chl fluorescence, yield, and yield components. Among nutrients, the combined Zn + B was more effective in reducing the effects of L-SHS than that of Zn and B alone. Nevertheless, there was an interaction between foliar nutrients application and PB-F, suggesting that Zn application alone had a profound influence on improving Chl fluorescence parameters and increased yield in combination with PB-F.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.