In operations requiring replacement of cemented endoprothesis, the removal of both the prosthesis and the cement is often difficult as the cement adheres strongly to the bone. Mechanical removal frequently results in fenestration or traumatisation of the bone. The aim of non-contact removal of polymethylmethacrylate (PMMA) with the laser, is to access normally inaccessible regions while inflicting a minimum amount of damage to the bone substance. The much cited cw or superpulsed CO2-laser cannot be used clinically, due to the thermal stressing of the bone. The paper shows spectra of PMMA with and without dopants, e.g. Tinuvin as UV absorber, optical staining with a high-pressure mercury lamp at lambda = 275 +/- 25 nm, lambda = 350 +/- 25 nm and various radiation times, as well as with an excimer laser lambda = 248 nm, FWHM 20 ns, and ablation measurements were made with the following lasers: excimer laser, Lambda Physics, EMG 102, FWHM 25 ns, lambda = 351 nm, excimer laser, Technolas, MAX 10, FWHM 60 ns, lambda = 308 nm, and a pulsed CO2 laser from PSI, lambda = 9.2 and 10.6 microns, FWHM 130 and 65 microseconds, pulse peak power 3.8 and 7.7 kW. The excimer laser, pulse length less than 100 ns, is unsuitable for clinical use because the required removal rate cannot be achieved either with doped PMMA or with pure PMMA. More promising results have been obtained with the pulsed (microseconds range) CO2 laser which has a removal rate of up to 30 times that of the above-mentioned excimer laser, with significantly lower thermal stressing of the bone than with the cw or super pulsed CO2 laser.