BACKGROUND AND PURPOSEWhile arachidonyl ethanolamine (anandamide) produces pharmacological effects mediated by cannabinoid CB1 receptors, it is also an agonist at the transient receptor potential vanilloid type 1 (TRPV1) ion channel. This study examined the cellular actions of anandamide in the midbrain periaqueductal grey (PAG), a region implicated in the analgesic actions of cannabinoids, and which expresses both CB1 receptors and TRPV1.
EXPERIMENTAL APPROACHIn vitro whole cell patch clamp recordings of glutamatergic excitatory postsynaptic currents (EPSCs) were made from rat and mouse PAG slices.
KEY RESULTSCapsaicin (1 mM) increased the rate, but not the amplitude of miniature EPSCs in subpopulations of neurons throughout the rat and mouse PAG. Capsaicin had no effect on miniature EPSCs in PAG neurons from TRPV1 knock-out mice. In mouse PAG neurons, anandamide (30 mM) had no effect on the rate of miniature EPSCs alone, or in the presence of either the CB1 antagonist AM251 (3 mM) or the TRPV1 antagonist iodoresiniferatoxin (300 nM). Anandamide produced a decrease in miniature EPSC rate in the presence of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 mM). By contrast, anandamide produced an increase in miniature EPSC rate in the presence of both URB597 and AM251, which was absent in TRPV1 knock-out mice.
CONCLUSIONS AND IMPLICATIONSThese results suggest that the actions of anandamide within PAG are limited by enzymatic degradation by FAAH. FAAH blockade unmasks both presynaptic inhibition and excitation of glutamatergic synaptic transmission which are mediated via CB1 receptors and TRPV1 respectively.
Neurotensin modulates pain via its actions within descending analgesic pathways which include brain regions such as the midbrain periaqueductal grey (PAG). The aim of this study was to examine the cellular actions of neurotensin on PAG neurons. Whole cell patch clamp recordings were made from rat midbrain PAG slices in vitro to examine the postsynaptic effects of neurotensin and its effects on GABA A mediated inhibitory postsynaptic currents (IPSCs). Neurotensin (100-300 nm) produced an inward current in subpopulations of opioid sensitive and insensitive PAG neurons which did not reverse over membrane potentials between -50 and -130 mV. The neurotensin induced current was abolished by the NTS1 and NTS1/2 antagonists SR48692 (300 nm) and SR142948A (300 nm). Neurotensin also produced a reduction in the amplitude of evoked IPSCs, but had no effect on the rate and amplitude of TTX-resistant miniature IPSCs. The neurotensin induced inhibition of evoked IPSCs was reduced by the mGluR5 antagonist MPEP (5μm) and abolished by the cannabinoid CB 1 receptor antagonist AM251 (3μm). These results suggest that neurotensin produces direct neuronal depolarisation via NTS1 receptors and inhibits GABAergic synaptic transmission within the PAG. The inhibition of synaptic transmission is mediated by neuronal excitation and action potential dependent release of glutamate, leading to mGluR5 mediated production of endocannabinoids which activate presynaptic CB 1 receptors. Thus, neurotensin has cellular actions within the PAG which are consistent with both algesic and analgesic activity, some of which are mediated via the endocannabinoid system.
We examined whether a prostaglandin E2 receptor subtype EP1 receptor antagonist abrogates neuropathic pain induced by chronic constriction injury model in rats. The EP1 receptor antagonist significantly reduced hyperalgesia, allodynia, and c-fos positive cells. These findings suggested that EP1 receptor antagonists may have a role in treatment of neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.