We investigate the effects of shock pressure and pore morphology on the formation and growth of hot spots in HMX (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine). Both non‐reactive and reactive ALE3D simulations are used in these studies. Our non‐reactive simulations show a viscous‐dominated pore collapse mode at lower shock pressures (2–10 GPa) with shear band formation and a hydrodynamic‐dominated mode at higher shock pressures (20‐40 GPa) due to bulk melting. When normalized by bulk shock heating, viscous‐dominated pore collapse modes are more efficient at generating hot spots. Pore morphology influences the post‐collapse temperature distributions and reaction rate for a fixed pore area and shock pressure. We find that multiple surface pores at the binder‐grain interface tend to react the fastest. Due to their upstream location in the HMX grain, the surface pores collapse sooner than interior pores; thus, the extent of reaction will generally favor these morphologies because they have more time to grow. In general, multiple smaller hot spots tend to react faster than a single larger hot spot because they accelerate one another's burning. The rank order of morphology effects, however, is not the same for non‐reactive and reactive simulations. For example, while multiple surface pores produce the highest reaction rates they do not produce the highest (non‐reactive) hot spot temperatures. Our numerical studies provide insights on hot spot mechanisms in lieu of direct measurements and can be used to develop advanced shock initiation models.
HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensive microstructural damage resulting from the temperature cycle and solid-state phase transition.
We employ in-situ flash x-ray imaging, together with a detailed multiphase convective burn model, to demonstrate how explosives' binder characteristics influence the burning processes in thermal explosions. Our study focuses on the HMX-based explosives LX-10 and PBX 9501. While the HMX (cyclotetramethylene-tetranitramine) crystallite size distributions for these two explosives are nearly identical before heating, our experiments and simulations indicate that after heating, variations result due to differences in binder composition. Post-ignition flash x-ray images reveal that the average density decreases at late times more rapidly in PBX 9501 than LX-10, suggesting a faster conductive burning rate in PBX-9501. Heated permeability measurements in LX-10 and PBX 9501 demonstrate that the binder system characteristics influence the evolution of connected porosity. Once ignited, connected porosity provides pathways for product gas heating ahead of the reaction front and additional surface area for burning, facilitating the transition from conductive to convective burning modes. A multiphase convective burn model implemented in the ALE3D code is used to better understand the influence on burn rates of material properties such as porosity and effective thermally damaged particle size. In this context, particles are defined as gas-impermeable binder-coated crystallites and agglomerations with a set of effective radii reff. Model results demonstrate quantitative agreement with containment wall velocity for confined PBX 9501 and LX-10, and qualitative agreement with density as a function of position in the burning explosive. The model predicts a decrease in post-ignition containment wall velocity with larger radii in reff. These experimental data and model results together provide insight into the initiation and propagation of the reaction wave that defines the convective burn front in HMX-based explosives, a necessary step toward predicting violence under a broad range of conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.