The emerging broadband wireless access (BWA) technology based on IEEE 802.16 is one of the most promising solutions to provide ubiquitous wireless access to the broadband service at low cost. This paper proposes an efficient uplink bandwidth request-allocation algorithm for variable-rate realtime services in IEEE 802.16 BWA networks. In order to minimize bandwidth wastage without degrading quality of service (QoS), we introduce a notion of target delay and propose dual feedback architecture. The proposed algorithm calculates the amount of bandwidth request such that the delay is regulated around the desired level to minimize delay violation and delay jitter for real-time services. Also, it can maximize utilization of wireless channel by making use of dual feedback, where the bandwidth request is adjusted based on the information about the backlogged amount of traffic in the queue and the rate mismatch between packet arrival and service rates. Due to the dual feedback architecture, the proposed scheme responds quickly to the variation of traffic load and is robust to the change of network condition. We analyze the stability of the proposed algorithm from a control-theoretic viewpoint and derive a simple design guideline based on the analysis. By implementing the algorithm in OPNET simulator, we evaluate its performance in terms of queue regulation, optimal bandwidth allocation, delay controllability, and robustness to traffic characteristics.Index Terms-IEEE 802.16, uplink scheduling, bandwidth request, quality of service, real-time service 1 In this paper, a packet denotes a MAC-layer payload without including MAC-layer overhead, i.e., MAC service data unit (MSDU), unless otherwise stated.This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings. 978-1-4244-2026-1/08/$25.00
Both water quantity and quality are impacted by climate change. In addition, rapid urbanization has also brought an immeasurable loss of life and property resulting from floods. Hence, there is a need to predict changes in rainfall events to effectively design stormwater infrastructure to protect urban areas from disaster. This study develops a framework for predicting future short duration rainfall intensity and examining the effects of climate change on urban runoff in the Gunja Drainage Basin. Non-stationarities in rainfall records are first analysed using trend analysis to extrapolate future climate change scenarios. The US Environmental Protection Agency Storm Water Management Model (SWMM) was used for single event simulation of runoff quantity from the study area. For the 1-hour and 24-hour durations, statistically significant upward trends were observed. Although the 10-minute duration was only nearly significant at the 90% level, the steepest slope was observed for this short duration. Moreover, it was observed that the simulated peak discharge from SWMM increases as the short duration rainfall intensity increases. The proposed framework is thought to provide a means to review the current design of stormwater infrastructures to determine their capacity, along with consideration of climate change impact.
At the hillslope scale, where the rill-interrill configuration plays a significant role, infiltration is one of the major hydrologic processes affecting the generation of overland flow. As such, it is important to achieve a good understanding and accurate modelling of this process. Horton's infiltration has been widely used in many hydrologic models, though it has been occasionally found limited in handling adequately the antecedent moisture conditions (AMC) of soil. Holtan's model, conversely, is thought to be able to provide better estimation of infiltration rates as it can directly account for initial soil water content in its formulation. In this study, the Holtan model is coupled to an existing overland flow model, originally using Horton's model to account for infiltration, in an attempt to improve the prediction of runoff. For calibration and validation, experimental data from a two-dimensional flume which is incorporated with hillslope configuration have been used. Calibration and validation results showed that Holtan's model was able to improve the modelling results with better performance statistics than the Horton-coupled model. Holtan's infiltration equation, which allows accounting for AMC, provided an advantage and resulted in better runoff prediction of the model.
Hydraulic flood routing is advantageous for computational accuracy; however, it requires individual calculations of an extensive pipe network in the case of a two-dimensional analysis. In this study, a method for considering the characteristics of a two-dimensional pipe network has been developed using the meta-channel concept to simplify the detailed calculations involved in the estimation of runoff from urban catchments. In essence, the meta-channel concept turns a two-dimensional pipe network into a one-dimensional pipe with an effective hydraulic geometry. Once such geometry has been identified, the flood routing can then be performed for an urban drainage system. A nonlinear diffusion wave equation, derived from the Saint-Venant equation, was used for flood routing, with an explicit method used for the numerical solution. The celerity and diffusion coefficients, which are two parameters of the diffusion wave equation, were estimated for the Goonja drainage from a two-dimensional pipe network using the meta-channel concept. A comparison of the results of the meta-channel-based pipe routing with the distributed SWMM simulation and observed data, showed close similarities, and identified the applicability of the meta-channel concept in an urban drainage setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.