BACKGROUND
Many different cystatin C–based equations exist for estimating glomerular filtration rate. Major reasons for this are the previous lack of an international cystatin C calibrator and the nonequivalence of results from different cystatin C assays.
METHODS
Use of the recently introduced certified reference material, ERM-DA471/IFCC, and further work to achieve high agreement and equivalence of 7 commercially available cystatin C assays allowed a substantial decrease of the CV of the assays, as defined by their performance in an external quality assessment for clinical laboratory investigations. By use of 2 of these assays and a population of 4690 subjects, with large subpopulations of children and Asian and Caucasian adults, with their GFR determined by either renal or plasma inulin clearance or plasma iohexol clearance, we attempted to produce a virtually assay-independent simple cystatin C–based equation for estimation of GFR.
RESULTS
We developed a simple cystatin C–based equation for estimation of GFR comprising only 2 variables, cystatin C concentration and age. No terms for race and sex are required for optimal diagnostic performance. The equation, eGFR=130×cystatin C−1.069×age−0.117−7, is also biologically oriented, with 1 term for the theoretical renal clearance of small molecules and 1 constant for extrarenal clearance of cystatin C.
CONCLUSIONS
A virtually assay-independent simple cystatin C–based and biologically oriented equation for estimation of GFR, without terms for sex and race, was produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.