In order to investigate the interdependent action of the insertion/deletion polymorphism of the angiotensin-converting enzyme (ACE) gene and polymorphism in exon 11 (C1136-->T; Ala379Val) of the platelet-activating factor acetylhydrolase (PAF-AH) gene, which encodes a functional antagonist of PAF, on the progression of immunoglobulin A (IgA) nephropathy, we analysed both polymorphisms in patients with primary IgA nephropathy, who were followed-up for longer than 3 years. During the follow-up (87.3 +/- 50.0 months), the disease progressed in 38 of the 191 patients (19.9%). The D allele of the ACE gene in the absence of the T allele of the PAF-AH gene did not affect the prognosis [odds ratio (OR), 3.6; 95% confidence interval (CI), 0.8-16.4] and neither did the T allele in the absence of the D allele (OR, 3.0; 95% CI, 0.4-24.2). However, the presence of both was a significant prognostic factor (OR, 6.6; 95% CI, 1.4-31.3). After adjusting for other risk factors, the presence of both proved to be an independent risk factor (OR, 4.5; 95% CI, 1.6-12.7). These results suggest that the interdependent effects of ACE and PAF-AH polymorphisms on the progression of IgA nephropathy might be more important than the effect of the individual polymorphisms.
We developed a two-stage temperature control system for a long-term stable measurement of AMoRE neutrinoless double beta decay experiment using a dilution refrigerator. The first-stage control was made with a standard PID system using an AC bridge with a ruthenium oxide thermometer as the main thermometer of the mixing chamber plate. The second-stage control was obtained with a magnetic microcalorimeter (MMC) that is configured as a sensitive thermometer for a detector tower, the main experiment. Under single-stage temperature control on the temperature of the mixing chamber plate only with the RuO2 thermometer, the MMC recorded temperature stability of the detector plate of 9 μK rms over 100 min. Under two-stage temperature control, with the first-stage of the mixing chamber plate at 11 mK via the RuO2 thermometer and the second-stage of the detector plate at 12 mK via the MMC, the MMC recorded a temperature stability of 0.5 μK rms over 100 min. Moreover, the heat channels of the AMoRE experiment obtained considerable improvement in energy resolutions when switching from single-stage (RuO2) to two-stage (RuO2 + MMC) control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.