The first reports on photodynamic therapy (PDT) date back to the 1970s. Since then, several thousands of patients, both with early stage and advanced stage solid tumours, have been treated with PDT and many claims have been made regarding its efficacy. Nevertheless, the therapy has not yet found general acceptance by oncologists. Therefore it seems legitimate to ask whether PDT can still be described as "'a promising new therapy in the treatment of cancer".Clinically, PDT has been mainly used for bladder cancer, lung cancer and in malignant diseases of the skin and upper aerodigestive tract. The sensitizer used in the photodynamic treatment of most patients is Photofrin®, (Photofrin®, the commercial name of dihematoporphyrin ether/ester, containing > 80% of the active porphyrin dimers/oligomers (A.M.R. Fisher, A.L. Murphee and C.J. Gomer, Clinical and preclinical photodynamictherapy, Review Series Article, Lasers Surg. Med., 17 (1995) 2-31 ). It is a complex mixture of porphyrins derived from hematoporphyrin. Although this sensitizer is effective, it is not the most suitable photosensitizer for PDT. Prolonged skin photosensitivity and the relatively low absorbance at 630 rim, a wavelength where tissue penetration of light is not optimal, have been frequently cited as negative aspects hindering general acceptance. A multitude of new sensitizers is currently under evaluation. Most of these "second generation photosensitizers" are chemically pure, absorb light at around 650 nm or greater and induce no or less general skin photosensitivity. Another novel approach is the photosensitization of neoplasms by the induction of endogenous photosensitizers through the application of 5-aminolevulinic acid (ALA). This article addresses the use of PDT in the disciplines mentioned above and attempts to indicate developments of PDT which could be necessary for this therapy to gain a wider acceptance in the various fields.
The kinetics of fluorescence in tumour (TT) and subcutaneous tissue (ST) and the vascular effects of photodynamic therapy (PDT) were studied using protoporphyrin IX (PpIX), endogenously generated after i.v. administration of 100 and 200 mg kg-1 5-aminolaevulinic acid (ALA). The experimental model was a rat skinfold observation chamber containing a thin layer of ST in which a small syngeneic mammary tumour grows in a sheet-like fashion. Maximum TT and ST fluorescence following 200 mg kg-1 ALA was twice the value after 100 mg kg-1 ALA, but the initial increase with time was the same for the two doses in both TT and ST. The fluorescence increase in ST was slower and the maximum fluorescence was less and appeared later than in TT. Photodynamic therapy was applied using green argon laser light (514.5 nm, 100 J cm-2). Three groups received a single light treatment at different intervals after administration of 100 or 200 mg kg-1 ALA. In these groups no correlation was found between the fluorescence intensities and the vascular damage following PDT. A fourth group was treated twice and before the second light treatment some fluorescence had reappeared after photobleaching due to the first treatment. Only with the double light treatment was lasting TT necrosis achieved, and for the first time with any photosensitiser in this model this was accomplished without complete ST necrosis. Images Figure 4
The fluorescence pharmacokinetics of a series of metallosulfophthalocyanines, chelated with either aluminum or zinc and sulfonated to different degrees, was studied by fluorescence measurements in vivo. Dyes were administered systemically to female WAG/RIJ rats with an isogeneic mammary carcinoma transplanted into the subcutis in a transparent observation chamber located on their backs. Following an intravenous injection of 2.5 mumol/kg of the dye, fluorescence dynamics was observed up to 7 h postinjection. The phthalocyanines were excited at 610 nm with a power density of 0.1 mW/cm2 without causing photodynamic damage to the vasculature. Fluorescence was detected above 665 nm using a fluorescence imaging system based on an image intensifier. Dye retention in the blood vessels and tumor tissue was expressed as ratios relative to the fluorescence signal of the surrounding subcutaneous tissue. Phthalocyanines chelated with aluminum gave the highest fluorescence signal with tumor-over-subcutis ratios of up to a value of 4. The zinc complexes exhibited the highest vascular-over-subcutis ratios with maximum values exceeding a value of 6. They also displayed the longest retention times in the vascular system of well over 7 h. Overall, decreasing the degree of sulfonation of the metallophthalocyanines results in lower tumor-over-normal tissue fluorescence ratios, and furthermore aluminum-based dyes seem superior tumor localizers over zinc-based dyes. The advantages of phthalocyanines over porphyrins with respect to tumor localization and photodynamic therapy are discussed.
Bacteriochlorin a (BCA), a derivative of bacteriochlorphyll a, is an effective photosensitiser in vitro and in vivo. BCA has a major absorption peak at 760 nm where tissue penetration is optimal. This property, together with rapid tissue clearance promises minor skin photosensitivity. The tissue localising and photodynamic properties of BCA were studied using isogeneic RMA mammary tumours, transplanted into subcutaneous tissue in transparent 'sandwich' observation chambers on the back of WAG/Rij rats. The fluorescence kinetics following an i.v. administration of 20 mg kg-1 BCA was assessed in blood vessels, tumour and normal tissue. Subsequently, the development of vascular- and tissue damage after a therapeutic light dose (760 nm, 600 J cm-2) was observed. Fifteen minutes post injection (p.i.), the fluorescence of BCA in the tumour reached a plateau value of 2.5 times the fluorescence in the normal tissue. From 1 h post injection the tumour fluorescence diminished gradually; after 24 h, the tumour fluorescence signal did not exceed that of the normal tissue. Following photodynamic therapy (PDT), 24 h p.i., complete vascular stasis was observed 2 h post treatment in the tumour only, with subsequent recovery. The presence of viable tumour cells following PDT was assessed by histology and re-transplantation of treated tumour tissue from the chamber into the flank immediately or 7 days after treatment. In both cases tumour regrowth was observed. BCA-PDT (20 mg kg-1, 760 nm, 100 J cm-2) 1 h after BCA administration, an interval which gives the optimal differential between tumour and normal tissue, was sufficient to prevent tumour regrowth. However, this only occurred when re-transplantation was performed 7 days after PDT. During PDT, 1 h p.i., vascular damage in tumour and normal tissue was considerable. Complete vascular shut-down was observed in the tumour 2 h after therapy and in the surrounding tissues at 24 h. Circulation damage was associated with vascular spasm and occlusion probably due to thrombi formation. Oedema was notable, especially following PDT with 600 J cm-2 at 24 h p.i. Images Figure 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.