A fluid (a gas or a liquid) adsorbed in a porous material can behave very differently from its bulk counterpart. The advent of various synthesized materials with nanopores and their wide applications have provided strong impetus for studying fluids in confinement because our current understanding is still incomplete. From a large number of Monte Carlo simulations, we found a scaling relation that allows for connecting some thermodynamic properties (chemical potential, free energy per particle, and grand potential per particle) of a confined fluid to the bulk ones. Upon rescaling the adsorbed fluid density, the adsorption isotherms for many different confining environments collapse to the corresponding bulk curve. We also reveal the intimate connection of the reported scaling relation to Gibbs theory of inhomogeneous fluids and morphological thermodynamics. The advance in our understanding of confined fluids, gained from this study, also opens attractive perspectives for circumventing experimental difficulty for directly measuring some fluid thermodynamic properties in nanoporous materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.