ABSTRACT. Bone samples from the Greenland Viking colony provide us with a unique opportunity to test and use 4C dating of remains of humans who depended upon food of mixed marine and terrestrial origin. We investigated the skeletons of 27 Greenland Norse people excavated from churchyard burials from the late 10th to the middle 15th century. The stable carbon isotopic composition (813C) of the bone collagen reveals that the diet of the Greenland Norse changed dramatically from predominantly terrestrial food at the time of Eric the Red around AD 1000 to predominantly marine food toward the end of the settlement period around AD 1450. We find that it is possible to 14C-date these bones of mixed marine and terrestrial origin precisely when proper correction for the marine reservoir effect (the 14C age difference between terrestrial and marine organisms) is taken into account. From the dietary information obtained via the S13C values of the bones we have calculated individual reservoir age corrections for the measured 14C ages of each skeleton. The reservoir age corrections were calibrated by comparing the 14C dates of 3 highly marine skeletons with the '4C dates of their terrestrial grave clothes. The calibrated ages of all 27 skeletons from different parts of the Norse settlement obtained by this method are found to be consistent with available historical and archaeological chronology. The evidence for a change in subsistence from terrestrial to marine food is an important clue to the old puzzle of the disappearance of the Greenland Norse, obtained here for the first time by measurements on the remains of the people themselves instead of by more indirect methods like kitchen-midden analysis.
AMS 14C dates were measured for 28 mollusk shells collected live in Danish waters over the period ad 1885 to 1945. Fourteen samples were from fjords and 14 were marine samples from the Danish Skagerrak-Kattegat coastal area and from the Belts. Reservoir ages were calculated for all samples on the basis of the tree-ring calibration curve. For the marine samples, which cover the period ad 1885–1916, we found a weighted-average reservoir age of 377 ± 16 yr. The marine ∆R values (the difference between the measured 14C age and the age deduced from marine, mixed-layer model calculation of Stuiver, Pearson and Braziunas (1986)) were found to be uniform within the experimental uncertainty with a weighted average of ∆R = 13 ± 16 yr. Based on the observed scatter, the standard deviation is 21 yr. This result shows that it is justified to use the marine calibration curve with standard parameters (∆R = 0) when 14C-dating marine samples from the Danish area. Our value is consistent with the result ∆R = −33 ± 27 yr previously found for the Norwegian and Swedish Skagerrak-Kattegat coasts. In contrast, reservoir ages for Danish fjords were found to vary from 400 to >900 yr, far beyond experimental uncertainty. We ascribe this to varying content of dissolved, old soil carbonate (hard-water effect). Therefore, dating of samples from such fjord environments is expected to be uncertain by several hundred years.
ABSTRACT. We report on 69 radiocarbon dates of mollusk shells and benthic foraminifera from the upper 132 m of the marine shelf sediments of the Skagen Core (220 m total length). The dated sequence covers the Late Glacial and the Holocene (from 15 ka BP to Recent). Sedimentation rates range from 1 to 70 m ka'1. The macrofossil shell dates follow a smooth curve constituting an age model for dating the sediments. The foraminiferal dates fall into two groups: those that agree exactly with the mollusk shells and those that deviate substantially, always being older than the shells by as much as 5 ka. One mixed foraminiferal sample consisted of members from both groups, and as a result, the age deviation of the sample turned out to be some weighted average. The data indicate that the age deviations are due to admixtures of reworked older foraminifera.
Several new AMS 14C dates on shells from the Fossvogur sea sediments in southern Iceland are reported. Up till now, researchers have assumed that the Fossvogur sediments formed during the last interglacial period (Eem), some 100,000 years ago. However, a recent 14C determination from this location yielded an age of ca 11,000 yr. Because of the importance of these sediments for the Quaternary chronology of Iceland, further sampling for 14C dating was subsequently initiated. The present results on several shell samples collected from the Fossvogur layers strongly indicate that these sediments were formed during the warm Allerød period toward the end of the last glaciation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.