BackgroundRecent evidence suggests that autonomic nervous system activity could be involved in the pathophysiology of sickle cell disease, but it is unclear whether differences in autonomic nervous system activity are detectable during steady state in patients with mild and severe disease. The aim of the present study was to compare the autonomic nervous system activity, blood rheology, and inflammation in patients with sickle cell anemia according to the frequency of acute pain crisis. Design and MethodsTwenty-four healthy volunteers, 20 patients with sickle cell anemia with milder disease, and 15 patients with sickle cell anemia with more severe disease were recruited. Milder disease was defined as having no pain crisis within the previous year. More severe disease was defined as having had within the previous year three or more pain crises which were documented by a physician and required treatment with narcotics. The autonomic nervous system activity was determined by spectral analysis of nocturnal heart rate variability. Blood viscosity determination and measurements of several inflammatory markers (interleukin-6, soluble vascular cell adhesion molecule-1, soluble CD40 ligand and sL-selectin) were made on blood samples collected in steady-state conditions. ResultsResults showed that: 1) patients who had suffered more frequent pain crises had lower parasympathetic activity and greater sympatho-vagal imbalance than both controls and patients with milder disease. However, when adjusted for age, no significant difference was detected between the two sickle cell anemia patient groups; 2) patients who had suffered more frequent pain crises had higher blood viscosity than patients with milder disease, and this was not dependent on age. ConclusionsResults from the present study indicate that both the autonomic nervous system activity and blood viscosity are impaired in patients with sickle cell anemia exhibiting high frequency of pain crisis in comparison with those who did not experience a crisis within the previous year. Haematologica 2011;96(11):1589-1594. doi:10.3324/haematol.2011 This is an open-access paper. Frequency of pain crises in sickle cell anemia and its relationship with the sympatho-vagal balance, blood viscosity and inflammation
The authors' aim was to examine the regional anatomy of brain activation by cognitive tasks commonly used in hypoglycemia research and to assess the effect of acute hypoglycemia on these in healthy volunteers. Eight right-handed volunteers performed a set of cognitive tasks-finger tapping (FT), simple reaction time (SRT), and four-choice reaction time (4CRT)-twice during blood oxygen level-dependent (BOLD) functional magnetic resonance imaging of the brain on two occasions. In study 1 (n ؍ 6), plasma glucose was maintained at euglycemia (5 mmol/l) throughout. In study 2 (n ؍ 6), plasma glucose was reduced to 2.5 mmol/l for the second set. Performance of the tasks resulted in specific group brain activation maps. During hypoglycemia, FT slowed (P ؍ 0.026), with decreased BOLD activation in right premotor cortex and supplementary motor area and left hippocampus and with increased BOLD activation in left cerebellum and right frontal pole. Although there was no significant change in SRT, BOLD activation was reduced in right cerebellum and visual cortex. The 4CRT deteriorated (P ؍ 0.020), with reduction in BOLD activation in motor and visual systems but increased BOLD signal in a large area of the left parietal association cortex, a region involved in planning. Hypoglycemia impairs simple brain functions and is associated with task-specific localized reductions in brain activation. For a task with greater cognitive load, the increased BOLD signal in planning areas is compatible with recruitment of brain regions in an attempt to limit dysfunction. Further investigation of these mechanisms may help devise rational treatment strategies to limit cortical dysfunction during acute iatrogenic hypoglycemia. Diabetes 50:1618 -1626, 2001
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.