Levels of naturally occurring radioactive materials prior to processing of gold ore within and around the new eastern concession area of Perseus Mining (Ghana) Limited were carried out to ascertain the baseline radioactivity levels. The study was based on situ measurements of external gamma dose rate at 1 m above ground level as well as laboratory analysis by direct gamma spectrometry to quantify the radionuclides of interest namely; 238U, 232Th and 40K in soil, rock, ore samples and gross alpha/beta analysis in water samples. The average absorbed dose rate in air at 1 m above sampling point using a radiation survey metre was determined to be 0.08 ± 0.02 μGyh−1 with a corresponding average annual effective dose calculated to be 0.093 ± 0.028 mSv. The average activity concentrations of 238U, 232Th, and 40K in the soil, rock, and ore samples were 65.1 ± 2.2, 71.8 ± 2.2 and 1168.3 Bqkg−1 respectively resulting in an average annual effective dose of 0.91 ± 0.32 mSv. The average Radium equivalent activity value was 257.8 ± 62.4 Bqkg−1 in the range of 136.6–340.2 Bqkg−1. The average values of external and internal indices were 0.7 ± 0.2 and 0.9 ± 0.2 respectively. The average gross alpha and gross beta activity concentrations in the water samples were determined to be 0.0032 ± 0.0024 and 0.0338 ± 0.0083 Bql−1 respectively. The total annual effective dose from the pathways considered for this study (gamma ray from the soil, rock and ore samples as well as doses determined from the gross alpha/beta activity concentration in water samples) was calculated to be 0.918 mSv. The results obtained in this study shows that the radiation levels are within the natural background radiation levels found in literature and compare well with similar studies for other countries and the total annual effective dose is below the ICRP recommended level of 1 mSv for public exposure control.
Studies have been carried out within and around the operational area of the Chirano Gold Mine Ltd of Ghana to ascertain the baseline radioactivity levels of naturally occurring radioactive materials as well as artificial radionuclides in the surface and underground mines. The analysis was carried out by using gamma spectrometry to quantify the radionuclides of interest, namely (238)U, (232)Th, (137)Cs and (40)K in soil, ore, waste rock and water samples. The average activity concentrations of (238)U, (232)Th, (40)K and (137)Cs in the soil/rock samples were 9.79±5.39, 9.18±7.06, 237.40±144.34 and 0.64±0.57 Bq kg(-1), respectively. For the water samples, the average activity concentrations were 0.86±0.67, 0.97±1.33 and 9.05±10.45 Bq l(-1) for (226)Ra, (232)Th and (40)K, respectively. The total annual effective dose to the public was estimated to be 0.13 mSv, which is below the International Commission on Radiological Protection recommended level of 1 mSv for public exposure control. The study also assessed the elemental concentrations of U, Th and K in the soil/rock samples from the gold mine and surrounding communities. The average concentrations of the U, Th and K were 0.82±0.48, 2.18±1.77 µg g(-1) and 0.77±0.47 %, respectively. The concentrations of U, Th and K were variable in soil and rock samples taken from different locations in the study area with values varying in the range 0.28-2.21, 0.24-6.50 µg g(-1) and 0.28-1.87 %, respectively. The concentrations of U, Th and K are far lower than the world average values but comparable with the range of similar studies for different countries. The concentration values of gross-alpha and gross-beta for all the water samples were below the Ghana Standards Authority and World Health Organisation recommended guideline values for drinking water quality. The results obtained in this study also show that radiation levels are within the natural background radiation levels found in the literature and compare well with those of similar studies for other countries including Ghana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.