Cloacal anomaly is a rare malformation with an incidence of 1 in 50,000 births. The definitive prenatal diagnosis of cloacal dysgenesis sequence is difficult. The use of three-dimensional (3-D) ultrasonography helps to describe the perineum and change diagnosis. In our case report, a large median genital structure was visualized, which was initially considered a penis-like structure, but the 3-D technique showed an enlarged bud. The urethral meatus was at the tip of this smooth structure. The lack of anal structure was clearly demonstrated.
La reconnaissance d’espèces basée sur des données d’images analysées par l’intelligence artificielle est de plus en plus populaire dans les suivis de biodiversité, pour faire face aux limites des méthodes plus traditionnelles et à l’émergence de considérations déontologiques préconisant le développement de pièges non destructifs (i.e. non létaux, « no kill »). Cette augmentation dans l’utilisation de nouvelles technologies peut largement s’expliquer par un besoin de gain en temps et en précision. Ce type de méthodologie est particulièrement intéressant pour les personnes qui n’ont pas l’expertise nécessaire pour distinguer de nombreuses espèces telles que les Insectes. De plus, les données photographiques sont moins susceptibles de créer un biais observateur que l’observation directe, car elles sont réutilisables et vérifiables. Dans ce document nous allons voir comment les données peuvent être acquises en milieu terrestre (i.e. méthodologies et outils de capture) et la manière dont les images sont ensuite traitées pour la classification des espèces (i.e. gestion des données et analyses). En particulier, nous avons considéré la possibilité d’automatiser les grands volumes de données collectées à l’aide de techniques d’apprentissage automatique et d’apprentissage profond afin de réaliser l’identification des espèces. Cette étude présente également les avantages et les limites de l’utilisation de ces outils pour l’identification automatique des espèces dans un contexte de suivi de biodiversité en milieu terrestre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.