Primary water stress corrosion cracking incidents have been reported in nuclear reactors over the past several decades. Garud et al developed an empirical equation to express primary water stress corrosion cracking (PWSCC) initiation time by using experimental data. This strain rate damage model has been used in multiple simulation studies. Some of these studies used the extended finite element method (XFEM) to simulate the PWSCC propagation in Alloy 600. However, several studies showed that the accuracy of XFEM depends on the mesh quality. Different mesh qualities can change the heat flux of a welding procedure, leading to different weld residual stresses. We performed a parametric study on PWSCC initiation and propagation of a control rod driving mechanism by using different mesh qualities.The major variables explored here are number of elements per bead, number of circumferential elements, and number of weld beads. Finally, an XFEM-based representative model was suggested for PWSCC initiation and propagation simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.