Structure-specific recognition protein (SSRP1) is an 87 kDa protein that heterodimerizes with Spt16 to form FACT, a complex initially shown to facilitate chromatin transcription. Despite its crucial roles in transcription and replication, little is known about the dynamics of FACT turnover in vivo. Here, we show that SSRP1 is cleaved during apoptosis by caspase 3 and/or 7 at the DQHD 450 site. Analysis of the resulting fragments suggests that cleavage of SSRP1 generates a truncated, chromatin-associated form of FACT. Furthermore, the N-terminal product is stabilized by proteasome inhibitors and ubiquitylated in cells, suggesting degradation through the ubiquitin-proteasome pathway. These results demonstrate that SSRP1 degradation during apoptosis is a two-step process coupling caspase cleavage and ubiquitin-dependent proteolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.