In this paper we address the effectiveness of riblets on skin friction reduction under the influence of an adverse pressure gradient. The measurements were taken in a wind tunnel. Skin friction was observed with a drag balance which has a reproducibility of better than 1%. The accuracy of the balance is estimated to be less than 1% for the case of zero-pressure gradient and at most 3% for a pressure gradient. The data on skin friction reduction at zero pressure gradient were consistent with previous results and amount to 5% at dimensionless riblet width of s § = 13. We find that at all adverse pressure gradients the skin friction reduction by riblets persists. At moderate pressure gradients the reduction increases somewhat to 7%. The velocity profile which is also measured, exhibits the characteristic shape for a boundary layer with an adverse pressure gradient and agrees well with theory. From the velocity profiles measured at two stations we estimated with the help of a momentum balance the skin friction and skin friction reduction. The results differ from the drag-balance data. Due to the poor accuracy of the momentum balance method which we estimate in our case, we conclude that the results obtained with this method are less reliable than those obtained with the drag balance. This throws some doubt on previous results on drag reduction under the influence of a pressure gradient which were based on the momentum balance method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.