The electrical degradation of 4H–SiC PiN diodes has recently attracted much interest and is a critical material problem for high power applications. The degradation is caused by stacking faults observed as an increased forward voltage drop after forward injection operation. In this article we have combined electrical, optical, and structural techniques to study the formation and growth of the stacking faults causing degradation. We will show three different sources causing two different types of stacking fault properties.
The structure of stacking faults formed in forward-biased 4H- and 6H-SiC p–n− diodes was determined using conventional and high-resolution transmission electron microscopy. Typical fault densities were between 103 and 104 cm−1. All observed faults were isolated single-layer Shockley faults bound by partial dislocations with Burgers vector of a/3〈1–100〉-type.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.