Abstract-Indoor positioning systems based on Wireless LAN (WLAN) are being widely investigated in academia and industry. Meanwhile, the emerging low-cost MEMS sensors can also be used as another independent positioning source. In this paper, we propose a pedestrian tracking framework based on particle filters, which extends the typical WLAN-based indoor positioning systems by integrating low-cost MEMS accelerometer and map information. Our simulation and real world experiments indicate a remarkable performance improvement by using this fusion framework.
The main tasks of car navigation systems are positioning, routing, and guidance. This paper describes a novel, two-step approach to vehicle positioning founded on the appropriate combination of the in-car sensors, GPS signals, and a digital map. The first step is based on the application of a Kalman filter, which optimally updates the model of car movement based on the in-car odometer and gyroscope measurements, and the GPS signal. The second step further improves the position estimate by dynamically comparing the continuous vehicle trajectory obtained in the first step with the candidate trajectories on a digital map. This is in contrast with standard applications of the digital map where the current position estimate is simply projected on the digital map at every sampling instant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.