A novel C3N4-CDot composite photocatalyst was very recently shown to be highly efficient and very stable in water splitting by solar radiation without using any sacrificial reagent (J. Liu, et al., Science, 2015, 347(6225), 970). This photocatalyst utilizes a two-electron/two-step process in which the production of H2O2 and H2 is photocatalyzed by using C3N4 in the first step and H2O2 is decomposed by using CDots in the second step. The present work is a study on the generality of this approach by application of a C3N4/MnO2 catalyst. This new catalyst indeed splits water by a two step process in a stable way, without any sacrificial agent. It was however found that though the absorbance of the new catalyst in the visible range of 500-600 nm is much larger than that of the C3N4-CDot catalyst, its water splitting efficiency is much lower. These findings add insight into and assist in the further optimization of this new class of photocatalysts to meet the requirements of commercial water splitting systems.
We studied two families in which the probands had severe bleeding tendency and showed low plasma levels of coagulation factor V (FV) antigen and activity. Sequence analysis of the FV gene on proband 1 demonstrated a novel G16088C homozygous missense mutation in exon 3 resulting in an Asp 68 to His substitution and on proband 2, a C69969T homozygous missense mutation in exon 23 leading to Gly2079Val. The parents of both families were each heterozygous for the corresponding FV gene defect. During their second pregnancy, the two families requested prenatal diagnosis. Chorionic villi were analysed at 12 weeks of gestation and cord blood samples were tested at 22 weeks. Microsatellite analysis performed in family 1 showed that the foetus sample was not contaminated by maternal tissue. The foetus 1 was found to be heterozygous for the familiar G16088C mutation with lower FV activity in the cord blood; the foetus 2 was a normal one. The diagnosis was confirmed after the birth. This is the first report of prenatal diagnosis for FV deficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.