Malondialdehyde (MDA) is an end-product of lipid peroxidation and a side product of thromboxane A
2
synthesis. Moreover, it is not only a frequently measured biomarker of oxidative stress, but its high reactivity and toxicity underline the fact that this molecule is more than “just” a biomarker. Additionally, MDA was proven to be a mutagenic substance. Having said this, it is evident that there is a major interest in the highly selective and sensitive analysis of this molecule in various matrices. In this review, we will provide a brief overview of the most recent developments and techniques for the liquid chromatography (LC) and gas chromatography (GC)-based analysis of MDA in different matrices. While the 2-thiobarbituric acid assay still is the most prominent methodology for determining MDA, several advanced techniques have evolved, including GC–MS(MS), LC–MS(MS) as well as several derivatization-based strategies.
In LC-MS, derivatization is primarily used to improve ionization characteristics, especially for analytes that are not (efficiently) ionized by ESI or APCI such as aldehydes, sugars, and steroids. Derivatization strategies are then directed at the incorporation of a group with a permanent charge. A compound class that typically requires derivatization prior to LC-MS is the group of small aliphatic aldehydes that are, for instance, analyzed as the key biomarkers for lipid peroxidation in organisms. Here we report the development of a new tailor-made, highly sensitive, and selective derivatization agent 4-(2-(trimethylammonio)ethoxy)benzenaminium halide (4-APC) for the quantification of aldehydes in biological matrixes with positive ESI-MS/ MS without additional extraction procedures. 4-APC possesses an aniline moiety for a fast selective reaction with aliphatic aldehydes as well as a quaternary ammonium group for improved MS sensitivity. The derivatization reaction is a convenient one-pot reaction at a mild pH (5.7) and temperature (10 degrees C). As a result, an in-vial derivatization can be performed before analysis with an LC-MS/MS system. All aldehydes are derivatized within 30 min to a plateau, except malondialdehyde, which requires 300 min to reach a plateau. All derivatized aldehydes are stable for at least 35 h. Linearity was established between 10 and 500 nM and the limits of detection were in the 3-33 nM range for the aldehyde derivatives. Furthermore, the chosen design of these structures allows tandem MS to be used to monitor the typical losses of 59 and 87 from aldehyde derivatives, thereby enabling screening for aldehydes. Finally, of all aldehydes, pentanal and hexanal were detected at elevated levels in pooled healthy human urine samples.
Liquid chromatography (LC) was coupled on-line to a continuous-flow enzymatic assay using electrospray ionization mass spectrometry (ESI-MS) as readout for the screening of enzyme inhibitors in complex samples. Inhibitors were detected by changes in the concentration of the enzymatic reaction products, indicating the inhibition of enzymatic activity. The molecular masses of the inhibitors were determined with high certainty by using retention time matching and peak shape comparison. Due to the high matching accuracy, baseline separation of coeluting analytes was not necessary in order to identify the correct masses of the bioactive compounds. The continuous-flow system was successfully applied for the screening of complex samples, such as natural extracts. For a red clover extract, detection limits of 0.3-0.8 micromol/L were obtained. System validation was performed by determining the IC(50) values of four inhibitors in the flow-injection mode. The IC(50) values were in the 0.11-5.6 micromol/L range and correspond closely to data obtained by microtiter plate assays. Detection limits were in the range of 0.018-0.35 micromol/L in the flow-injection mode, and 0.075-0.75 micromol/L in the LC mode. These values are well below the typical compound concentrations (1-10 micromol/L) used in high-throughput screening. Together with an interday precision of 12.6%, these results demonstrate the applicability of the system for bioactivity screening of complex mixtures, generating both chemical and biological information on bioactive compounds in a single run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.