The sodium/iodide symporter (NIS) mediates iodide uptake in lactating breast tissue and is expressed in some breast cancers. We have previously demonstrated that all-trans retinoic acid (tRA) stimulates NIS gene expression and the selective cytotoxic effect of beta-emitting radioiodide-131 ((131)I) in both in vitro and in vivo MCF-7 breast cancer cell systems. We studied the ability of natural and synthetic retinoids, in combination with other nuclear receptor ligands, to achieve greater and more sustained induction of NIS in MCF-7 cells and enhance (131)I-mediated cytotoxicity. Selective stimulation of retinoic acid receptor (RAR) beta/gamma produced marked NIS induction; and selective stimulation of RARalpha, RARgamma, or retinoid X receptor produced more modest induction. Maximal NIS induction was seen with 9-cis retinoic acid and AGN190168, a RAR beta/gamma-agonist. Dexamethasone (Dex), but not the other nuclear receptor ligands, in combination with tRA synergistically induced iodide uptake and NIS mRNA expression, predominantly by prolonging NIS mRNA half-life. The addition of Dex reduced the EC(50) of tRA for NIS stimulation to approximately 7%, such that 10(-7) m tRA with addition of Dex enhanced iodide uptake and selective cytotoxicity of (131)I greater than 10(-6) m tRA alone. AGN190168 combined with Dex synergistically increased iodide uptake and significantly prolonged induction (5 d) of iodide uptake compared with that induced by the combination of tRA/Dex or 9-cis retinoic acid/Dex. The addition of Dex reduced the effective dose of retinoid and prolonged the induction of NIS, especially with AGN190168, suggesting higher efficacy of (131)I after combination treatment.
Lactating breast tissue and some breast cancers express the sodium/ iodide symporter (NIS) and concentrate iodide. We recently demonstrated that all-trans retinoic acid (tRA) induces both NIS gene expression and iodide accumulation in vitro in well-differentiated human breast cancer cells (MCF-7). In the present study, we investigated the in vivo efficacy and specificity of tRA-stimulated iodide accumulation in mouse breast cancer models. Immunodeficient mice with MCF-7 xenograft tumors were treated with systemic tRA for 5 days. Iodide accumulation in the xenograft tumors was markedly increased, ϳ15-fold greater than levels without treatment, and the effects were tRA dose dependent. Iodide accumulation in other organs was not significantly influenced by tRA treatment. Significant induction of NIS mRNA and protein in the xenograft tumors was observed after tRA treatment. Iodide accumulation and NIS mRNA expression were also selectively induced in breast cancer tissues in transgenic mice expressing the oncogene, polyoma virus middle T antigen. These data demonstrate selective induction of functional NIS in breast cancer by tRA. Treatment with short-term systemic retinoic acid, followed by radioiodide administration, is a potential tool in the diagnosis and treatment of some differentiated breast cancer.
Fluid and epithelial cells obtained from the breasts of non-pregnant, non-lactating women by nipple aspiration, can be used for early diagnosis of breast neoplasms. However, since nipple aspirate fluid (NAF) with cells is obtainable from less than half of women sampled, the question arises: Is this method capable of targeting the women most likely to develop breast cancer? We approached this question with a 25-year prospective study to determine if subjects yielding NAF with or without epithelial cells were more likely to develop breast cancer during the follow-up period than subjects from whom no NAF or epithelial cells were obtained. Logistic regression analysis was used to determine relative risk (RR) with 95% confidence intervals (CI). The follow-up cohort of 972 was representative of the eligible cohort of 1605 for factors related to breast cancer risk and nipple aspiration outcome, and representative of the general population for breast cancer risk. After a mean follow-up period of 25 years, women with epithelial cells in NAF were significantly more likely to develop breast cancer (RR=1.92; CI=1.22-3.01; p
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.