An internal crack is a common defect which can lead to failure of the material. There are few published studies which can quantitatively predict healed fractions under given conditions such as temperature, pressure and healing time. In the current study, a new crack healing kinetic model is developed to predict the healed crack fraction under any given temperature, pressure and healing time. In contrast to previous models, this new model describes the crack surface topography as a series of semi spherical pores, and proposes a new diffusion healing mechanism involving grain growth. Plastic deformation, power law creep and diffusion controlled creep mechanism are considered in this model. A crack heaiing diagram for 34MnV steel is constructed with axes of healed fraction and temperature or pressure. The predictions from the new model compare well with experimental results. The results of the model indicate that the diffusion controlled creep mechanism contributes little at high temperatures because of grain growth. The critical healing time and pressure can be determined by using the crack healing diagram.
Porous defect is a common defect that can reduce the mechanical properties of the material. There are few published studies to predict the relative density considering the stochastic characteristics of the pore sizes. In the current study, a probabilistic pore healing model for the prediction of relative density in heat treatment is presented based on the pore size distribution of porous defect. The probabilistic distribution of pore sizes was introduced into a deterministic model of sintering by taking the parameter of pore radius as a random variable. Numerical integration was used to calculate the relative density of the porous material. A pore healing diagram for the 316L stainless steel is constructed with axes of relative density and temperature. The critical healing time and temperature can be determined using the pore healing diagram. Comparison was made between the calculated and experimental results. The results indicate that the probabilistic model is more precise than the deterministic model in predicting the relative density of the material.
As subsea shield tunnels are becoming increasingly popular, especially in coastal or river cities, the complicated construction environment poses multiple challenges that need to be addressed to ensure their safety and reliable operation. This study presents the results of centrifuge model tests that aimed to examine the impacts of navigable channel excavation and seawall construction on the deformation and forces acting on a subsea shield tunnel. The symmetry of the tunnel structure, as well as the loading and unloading effects from channel excavation and seawall construction in this engineering project, allow for the simplification of the problem. The centrifuge test model included a novel device to simulate the unloading action of channel excavation and the loading impact from seawall construction. The structural response of the tunnel was monitored using an innovative solution, and various parameters such as vertical displacement, opening of the circumferential joint, circumferential bending moment, and longitudinal stress were analyzed. The results reveal that both channel excavation and seawall construction have significant effects on the stress and deformation of the pre-existing tunnel. While the excavation of the navigable channel reduces the load on the tunnel from the overlying strata, resulting in uplifts in the tunnel structure around the excavation area, and the construction of the seawall causes settlement of the tunnel near the loading zone. The unloading effect of channel excavation leads to the opening tendency of the tunnel circumferential joints, while the loading effect of seawall construction has the opposite effect on the tunnel circumferential joints. The excavation of the channel induces tensile stresses on the tunnel crown around the loading zone, while the seawall construction causes significant compressive stresses on the tunnel crown around the loading zone. It is crucial to prioritize safety and ensure the tunnel’s load-bearing capacity through careful design and construction considerations in practical engineering. The study can guide the design and construction of future projects and help minimize the risk of damage to pre-existing structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.