The combination of laser-induced breakdown spectroscopy (LIBS) and laser-induced fluorescence (LIF) was investigated to improve the limit of detection (LoD) of trace elements in liquid water, while preserving the distinctive on-line monitoring capabilities of LIBS analysis. The influence of the main experimental parameters, namely the ablation fluence, the excitation fluence, and the inter-pulse delay was studied to maximize the fluorescence signal. The plasma was produced by a 266 nm frequencyquadrupled Q-switched Nd:YAG laser and the trace elements under investigation were then re-excited by a nanosecond optical parametric oscillator (OPO) laser, delivering pulses in the sub-mJ energy range, and tuned to strong absorption lines of the trace elements. The reproducibility of the measurements was improved using a home-made flow-cell, and relative standard deviations as low as 6.7% for a series of 100 shots were attained with a repetition rate of 0.7 Hz. Using the LIBS-LIF technique, we demonstrated LoDs of 39 ppb and 65 ppb for Pb and Fe, respectively, accumulating over 100 laser shots only, which correspond to an improvement of about 500 times with respect to LIBS.
READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n'arrivez pas à les repérer, communiquez avec nous à
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.