This paper presents an approximate theory for the reduction of the velocity of a current due to the presence of sinusoidal waves. For a given slope, S, in water of constant depth, d, the current velocity profile is U(z) = U^ (2.5'ln — - A) (1) t zo as a function of the height, z, above the bed. Eq. 1 is valid only above the thin wave boundary layer near the bed, the roughness of which is k = 30 z . Uf is the current friction velocity defined by p Ul = y d S = T (2) f ' cw CW Values of A can be found from: Fig. 2 where Aj applies when the direction of wave propagation is parallel to the current direction, and Fig. 3 where A2 applies when the direction of wave propagation is perpendicular to the current direction, cf. Notation in Sec. 2. The theory is based upon a number of assumptions (see Sec. 4).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.