The performance expected from the next generation of electron accelerators is driving research into photocathode technology as this fundamentally limits the achievable beam quality. The performance characteristics of a photocathode are most notably: normalised emittance, brightness and energy spread. Ultra–thin oxide films on metal substrates have been shown to lower the work function (WF) of the surface, enhancing commonly utilised metal photocathodes, potentially improving lifetime and performance characteristics. We present the characterisation of two MgO/Cu photocathodes grown at Daresbury. The surface properties such as: surface roughness, elemental composition and WF, have been studied using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). The photoemissive properties have been characterised with quantum efficiency (QE) measurements at 266 nm. Additionally, we measure the Transverse Energy Distribution Curves (TEDC) for these photocathodes under illumination at various wavelengths using ASTeC’s Transverse Energy Spread Spectrometer (TESS) and extract the Mean Transverse Energy (MTE).
Metal photocathodes are widely utilized as electron sources for particle accelerators for their ease of use, high durability, and fast response time. However, the high work function (WF) and low quantum efficiency (QE) typically observed in metals necessitate the use of high power deep UV lasers. Metal oxide ultra-thin films on metals offer a route to photocathodes with a lower WF and improved QE while maintaining photocathode durability and response time. We show how the photocathode performance of an Ag(100) single crystal is enhanced by the addition of an ultra-thin MgO film. The film growth and WF reduction of 1 eV are characterized, and the QE and mean transverse energy (MTE) are measured as a function of illumination wavelength. An eightfold increase of QE is achieved at 266 nm without adding to MTE through additional surface roughness, and the resistance of the photocathode to O[Formula: see text] gas is greatly improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.