In group sequential clinical trials, sample size reestimation can be a complicated issue when it allows for change of sample size to be influenced by an observed sample path. Our simulation studies show that increasing sample size based on an interim estimate of the treatment difference can substantially inflate the probability of type I error in most practical situations. A new group sequential test procedure is developed by modifying the weights used in the traditional repeated significance two-sample mean test. The new test has the type I error probability preserved at the target level and can provide a substantial gain in power with the increase of sample size. Generalization of the new procedure is discussed.
This publication describes uniform definitions for cardiovascular and stroke outcomes developed by the Standardized Data Collection for Cardiovascular Trials Initiative and the US Food and Drug Administration (FDA). The FDA established the Standardized Data Collection for Cardiovascular Trials Initiative in 2009 to simplify the design and conduct of clinical trials intended to support marketing applications. The writing committee recognizes that these definitions may be used in other types of clinical trials and clinical care processes where appropriate. Use of these definitions at the FDA has enhanced the ability to aggregate data within and across medical product development programs, conduct meta-analyses to evaluate cardiovascular safety, integrate data from multiple trials, and compare effectiveness of drugs and devices. Further study is needed to determine whether prospective data collection using these common definitions improves the design, conduct, and interpretability of the results of clinical trials.
In recent years, the use of the last observation carried forward (LOCF) approach in imputing missing data in clinical trials has been greatly criticized, and several likelihood-based modeling approaches are proposed to analyze such incomplete data. One of the proposed likelihood-based methods is the Mixed-Effect Model Repeated Measure (MMRM) model. To compare the performance of LOCF and MMRM approaches in analyzing incomplete data, two extensive simulation studies are conducted, and the empirical bias and Type I error rates associated with estimators and tests of treatment effects under three missing data paradigms are evaluated. The simulation studies demonstrate that LOCF analysis can lead to substantial biases in estimators of treatment effects and can greatly inflate Type I error rates of the statistical tests, whereas MMRM analysis on the available data leads to estimators with comparatively small bias, and controls Type I error rates at a nominal level in the presence of missing completely at random (MCAR) or missing at random (MAR) and some possibility of missing not at random (MNAR) data. In a sensitivity analysis of 48 clinical trial datasets obtained from 25 New Drug Applications (NDA) submissions of neurological and psychiatric drug products, MMRM analysis appears to be a superior approach in controlling Type I error rates and minimizing biases, as compared to LOCF ANCOVA analysis. In the exploratory analyses of the datasets, no clear evidence of the presence of MNAR missingness is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.