Keywords:Mixed-integer linear programming Renewable energy park Scheduling Virtual power producer a b s t r a c t In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
The planning problem of electrical power distribution networks, stated as a mixed nonlinear integer optimization problem, is solved using the ant colony system algorithm (ACS). The behavior of real ants has inspired the development of the ACS algorithm, an improved version of the ant system (AS) algorithm, which reproduces the technique used by ants to construct their food recollection routes from their nest, and where a set of artificial ants cooperate to find the best solution through the interchange of the information contained in the pheromone deposits of the different trajectories. This metaheuristic approach has proven to be very robust when applied to global optimization problems of a combinatorial nature, such as the traveling salesman and the quadratic assignment problem, and is favorably compared to other solution approaches such as genetic algorithms (GAs) and simulated annealing techniques. In this work, the ACS methodology is coupled with a conventional distribution system load-flow algorithm and adapted to solve the primary distribution system planning problem. The application of the proposed methodology to two real cases is presented: a 34.5-kV system with 23 nodes from the oil industry and a more complex 10-kV electrical distribution system with 201 nodes that feeds an urban area. The performance of the proposed approach outstands positively when compared to GAs, obtaining improved results with significant reductions in the solution time. The technique is shown as a flexible and powerful tool for the distribution system planning engineers.
This paper proposes a computationally efficient methodology for the optimal location and sizing of static and switched shunt capacitors in radial distribution systems. The problem is formulated as the maximization of the savings produced by the reduction in energy losses and the avoided costs due to investment deferral in the expansion of the network. The proposed method selects the nodes to be compensated, as well as the optimal capacitor ratings and their operational characteristics, i.e. fixed or switched. After an appropriate linearization, the optimization problem was formulated as a mixed-integer linear problem, suitable for being solved by means of a widespread commercial package. Results of the proposed optimizing method are compared with another recent methodology reported in the literature using two test cases: a 15-bus and a 33-bus distribution network. For the both cases tested, the proposed methodology delivers better solutions indicated by higher loss savings, which are achieved with lower amounts of capacitive compensation. To calculate the energy savings and the deferral investment cost exactly, a load flow for radial distribution network is executed before and after the compensation. The proposed method has also been applied for compensating to an actual radial distribution network served by AES-Venezuela in the metropolitan area of Caracas. A convergence time of about 4 s after 22,298 iterations demonstrates the ability of the proposed methodology for efficiently handling compensation problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.