Nanoscale Nickel ferrite particles were prepared by combustion method using nickel nitrate as oxidizer and urea as a fuel. The structure of the sample is studied with X-ray diffraction (XRD) using Cu-Kα radiation. The X-ray diffraction analysis revealed the nanocrystalline nature in the prepared ferrite samples. Dielectric studies have been undertaken over a wide range of frequencies (100Hz-5MHz) for Nickel nanoferrites at room temperature. Dielectric properties such as dielectric loss tangent (D), dielectric constant (ε′ ) and dielectric loss factor (ε″) are found to decrease with the increase in the frequency. Observed variations are understood on the basis of Koop’s phenomenological model. Further, a. c. conductivity of the Nickel nanoferrite was found to increase with the increase in the frequency. Observed variation in the a. c. conductivity with the frequency has been understood on the basis of electron hopping model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.